Crops ›› 2022, Vol. 38 ›› Issue (6): 167-173.doi: 10.16035/j.issn.1001-7283.2022.06.024

Previous Articles     Next Articles

Volatiles Metabolites Analysis and Evaluation on Quality Traits of Different Tora Varieties

Guo Juxian1(), Huang Jiaxin2, Li Guihua1, Fu Mei1, Luo Wenlong1, Wang Jun2, Lu Meilian2()   

  1. 1Vegetable Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, Guangdong, China
    2Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
  • Received:2021-08-20 Revised:2021-09-14 Online:2022-12-15 Published:2022-12-21
  • Contact: Lu Meilian E-mail:guojuxian2021@163.com;761412436@qq.com

Abstract:

Taro is an important vegetable as well as a staple crop, which is abundant in nutrition and drugs components. However, the studies on the evaluation of taro quality traits and its molecular mechanism were less reported. We systematically evaluated the appearance and nutrient indexes of 18 taro varieties derived from different ecological regions of China by bioinformatics methods, and quantitively and qualitatively determined the relative abundance of volatiles metabolites with GC-MS approach. The results showed that weight per taro, dry mass and starch contents were relatively higher in Kui taro than that in Duozi taro. The quality traits in different taro varieties exert huge variation. Principal component analysis (PCA) revealed the four independent indexes from the determined quality traits, with 82.31% accumulative contribution rates, which reflected the majority variation information. The top five comprehensive scores were found to belong to Kui taro. Furthermore, we analyzed the differentially abundant volatiles metabolites in Tanbu xiang taro and Huaduhongya taro, and identified 76 volatiles metabolites, including two extremely upregulated metabolites, 4-methyl-6-hepten-4-olide and 1-methylethyl-naphthalene, especially in Tanbuxiang taro. The two key metabolites are very likely related to the biological function of aromatic profiles.

Key words: Taro, Nutritional components, Quality evaluation, Principal component analysis, Volatiles metabolites

Table 1

The names and origins of tested taro varieties"

品种编号
Variety
number
品种名称
Variety name
来源
Origin
品种类别
Variety
clustering
1 江西白芽芋Jiangxibaiya taro 江西寻乌 多子芋
2 广西红芽芋Guangxihongya taro 广西天等 多子芋
3 山东小毛芋Shandongxiaomao taro 山东日照 多子芋
4 常德紫禾芋Changdezihe taro 湖南常德 多子芋
5 常德红禾芋Changdehonghe taro 湖南常德 多子芋
6 花都红芽芋Huaduhongya taro 广东广州 多子芋
7 连州岭芋Lianzhouling taro 广东连州 多子芋
8 长亭香芋Changtingxiang taro 福建长亭 魁芋
9 荔浦香芋Lipuxiang taro 广西荔浦 魁芋
10 张溪香芋Zhangxixiang taro 广东乐昌 魁芋
11 始兴香芋Shixingxiang taro 广东始兴 魁芋
12 乳源香芋Ruyuanxiang taro 广东乳源 魁芋
13 连州香芋Lianzhouxiang taro 广东连州 魁芋
14 江西香芋Jiangxixiang taro 江西南非 魁芋
15 永州香芋Yongzhouxiang taro 湖南永州 魁芋
16 龙岩香芋Longyanxiang taro 福建龙岩 魁芋
17 儋州香芋Danzhouxiang taro 海南儋州 魁芋
18 炭步香芋Tanbuxiang taro 广东广州 魁芋

Table 2

Variation of hardness, longitudinal diameter, transverse diameter and weight per taro of different taro varieties"

品种编号Variety number 硬度Hardness (kg/cm2) 纵径Longitudinal diameter (cm) 横径Transverse diameter (cm) 单芋重Weight per taro (g)
1 1.17±0.64de 5.50±0.50h 4.50±0.50fg 58.33±13.09g
2 2.40±1.23abcd 7.00±0.50gh 3.67±0.58gh 68.33±13.48g
3 2.20±0.20abcde 5.33±0.58h 3.01±0.01h 39.17±11.18g
4 2.60±0.79abc 5.33±0.29h 4.67±0.29fg 81.23±7.43g
5 2.17±0.91abcde 5.33±1.26h 4.51±0.50fg 68.11±9.95g
6 1.21±0.58de 8.01±1.00gh 4.67±0.29f 119.67±16.44g
7 1.61±0.26cde 5.51±0.87h 3.01±0.51h 37.73±6.22g
8 1.80±0.98abcde 12.33±0.58ef 8.00±0.01e 590.71±71.05f
9 1.03±0.35e 11.01±1.12f 8.02±0.01e 635.00±36.40def
10 1.63±1.31bcde 22.00±1.73b 10.33±0.58a 1280.33±62.38c
11 1.97±0.38abcde 15.67±2.08c 8.33±0.58de 762.61±128.62def
12 0.91±0.10e 25.67±0.58a 9.17±0.29bcd 1614.63±156.18b
13 2.57±0.93abc 14.33±0.58cd 8.33±0.58de 734.50±58.34def
14 3.13±0.12a 13.01±1.01de 9.54±0.51abc 616.33±74.70ef
15 2.80±0.36abc 10.67±0.58f 8.67±0.29cde 644.41±14.86def
16 2.97±0.42ab 14.33±0.58cd 9.33±0.58bc 614.03±55.43ef
17 0.90±0.10e 11.00±0.50f 7.83±0.76e 530.03±28.47f
18 0.91±0.10e 27.33±0.58a 9.67±0.29ab 1900.01±100.01a
平均值Average 1.89 12.19 6.95 577.51
变异系数CV (%) 48.94 55.91 36.30 94.54

Table 3

Pearson correlation analysis on appearance quality indexes of different taro varieties"

指标Index 硬度Hardness 纵径Longitudinal diameter 横径Transverse diameter 单芋重Weight per taro
硬度Hardness 1.000
纵径Longitudinal diameter -0.303 1.000
横径Transverse diameter 0.000 0.815** 1.000
单芋重Weight per taro -0.326 0.987** 0.823** 1.000

Fig.1

Variation of quality indexes in 18 taro varieties"

Table 4

Pearson correlation analysis on the nine quality related indexes"

指标
Index
Vc 总酚
Total phenolics
黄酮
Flavone
直链淀粉
Amylose
支链淀粉
Amylopectin
粗纤维
Crude fiber
还原糖
Reducing sugar
蛋白质
Protein
干物质
Dry mass
Vc 1.000
总酚Total phenolics -0.153 1.000
黄酮Flavone -0.106 -0.455 1.000
直链淀粉Amylose 0.602** -0.246 0.430 1.000
支链淀粉Amylopectin -0.029 -0.490* 0.868** 0.588* 1.000
粗纤维Crude fiber 0.320 0.213 0.341 0.338 -0.057 1.000
还原糖Reducing sugar -0.285 0.548* -0.191 -0.255 -0.273 0.254 1.000
蛋白质Protein 0.098 0.244 0.034 -0.036 -0.089 -0.119 -0.144 1.000
干物质Dry mass 0.220 -0.872 0.853 0.698 0.809 -0.510 -0.782 -0.469 1.000

Table 5

The eigenvalues, contribution rates and the accumulative contribution rates of four principal components"

品质指标
Quality index
主成分1
PC1
主成分2
PC2
主成分3
PC4
主成分4
PC4
硬度Hardness -0.02 0.24 -0.85 0.06
纵径Longitudinal diameter 0.81 -0.37 0.26 -0.13
横径Transverse diameter 0.91 -0.27 -0.10 0.06
单芋重Weight per taro 0.79 -0.39 0.27 -0.10
Vc 0.03 0.68 0.28 -0.56
总酚Total phenolics -0.72 0.11 -0.10 0.43
黄酮Flavone 0.83 0.09 -0.18 0.36
直链淀粉Amylose 0.45 0.84 0.11 0.02
支链淀粉Amylopectin 0.89 0.22 -0.02 0.33
粗纤维Crude fiber -0.25 0.56 0.49 0.21
干物质Dry mass -0.85 -0.40 0.06 -0.26
还原糖Reducing sugar -0.46 -0.15 0.37 0.67
蛋白质Protein -0.06 0.11 -0.56 -0.11
特征值Eigenvalue 5.38 2.20 1.74 1.37
贡献率Contribution rate (%) 41.42 16.96 13.41 10.52
累计贡献率
Accumulative contribution
rate (%)
41.42 58.38 71.79 82.31

Table 6

The scores of the principal components and the ranking of the excellent degree of the quality of taro varieties"

品种编号Variety number 主成分1PC1 主成分2PC2 主成分3PC3 主成分4PC4 前4名PCTop 4 of PC 排序Ranking
1 -1.76 -0.15 1.31 0.46 -0.78 14
2 -0.15 3.02 0.41 -1.59 0.08 8
3 -1.70 0.21 -0.48 -0.47 -0.95 16
4 -1.40 0.27 -0.88 -0.06 -0.66 13
5 -2.01 -0.64 -0.78 0.53 -0.98 17
6 -1.13 -0.68 0.20 -1.65 -1.19 18
7 -2.14 -0.65 0.71 1.38 -0.80 15
8 0.36 0.80 0.25 1.86 0.88 3
9 0.30 1.19 0.84 1.22 0.75 4
10 2.37 -0.42 0.18 0.15 1.15 1
11 0.51 -0.83 0.23 -0.13 0.04 9
12 2.32 -0.85 1.16 0.34 1.09 2
13 0.69 0.64 -0.13 0.27 0.56 7
14 0.24 -0.28 -2.58 -0.26 -0.01 10
15 0.83 0.17 -1.00 0.38 0.57 6
16 -0.34 -0.59 -1.09 0.09 -0.26 12
17 0.28 0.14 0.36 -0.87 -0.07 11
18 2.70 -1.34 1.27 -1.70 0.58 5

Fig.2

Comparison on quality related traits and correlation analysis in Tanbuxiang taro and Huaduhongya taro (a) images of the roots transversal surface, (b) Principal component analysis on volatile metabolites, (c) heatmap representing the relative abundance variation of 76 volatile metabolites, (d) volcano plot analysis on differentially abundant metabolites"

Table 7

Two significantly enriched metabolites in two taro varieties"

物质Compound 保留时间
Retention time (min)
品种编号Variety number P
P value
Log2FC 调控
Regulation
6 18
4-甲基-6-庚烯-4-油化物4-methyl-6-hepten-4-olide 24.7097 30.10±7.24a 156.10±30.68a 0.015214 -2.37471 上调
1-甲基乙基-萘1-methylethyl-naphthalene 22.0401 3.45±1.34b 8.61±0.50b 0.013334 -1.31847 上调
[1] 金有景. 抗癌食药本草(上卷). 北京: 中国食品出版社, 1989.
[2] 赵国华, 陈宗道, 王斌. 芋头多糖的理化性质及体内免疫调节活性研究. 中国食品学报, 2002, 2(3):22-25.
[3] Riberiro P P, Bertozzi A M, Nitzsche T F, et al. Anticancer and immunomodulatory benefits of taro (Colocasia esculenta) corms,an underexploited tuber crop. International Journal of Molecular Sciences, 2020, 22(1):265-265.
doi: 10.3390/ijms22010265
[4] 吴征镒, 李恒. 中国植物志:第13卷‧第2分册. 北京: 科学出版社, 1979.
[5] 刘珍环, 杨鹏, 吴文斌, 等. 近30年中国农作物种植结构时空变化分析. 地理学报, 2016, 71(5):840-851.
doi: 10.11821/dlxb201605012
[6] 杨建国, 皮向红, 李倩, 等. 湖南香芋产业现状、问题及发展建议. 湖南农业科学, 2020(3):103-105.
[7] 戴修纯, 罗燕羽, 黄绍力, 等. 广东省芋头产业现状与发展对策. 广东农业科学, 2021, 48(6):126-135.
[8] Alexandra S, Jamora N, Smale M, et al. The tale of taro leaf blight:a global effort to safeguard the genetic diversity of taro in the Pacific. Food Security, 2020, 12(5):1005-1016.
doi: 10.1007/s12571-020-01039-6
[9] Irwin S V, Kaufusi P, Banks K, et al. Molecular characterization of taro (Colocasia esculenta) using RAPD markers. Euphytica, 1998, 99(3):183-189.
doi: 10.1023/A:1018309417762
[10] 黄新芳, 彭静, 柯卫东, 等. 206份芋种质资源品质性状分析. 植物遗传资源学报, 2014, 15(3):519-525.
[11] Dong W Q, He F L, Wei S L, et al. Identification and characterization of SSR markers in taro [Colocasia esculenta (L.) Schott] by RAD sequencing. Genetic Resources and Crop Evolution, 2021, 19(6):1-9.
[12] Huang D F, Luo T. Yuetian soil conditioner can enhance the output, decrease the concentration of heavy metals of areca taro and reduce soil acidity. Journal of Physics:Conference Series, 2021, 1732(1):12-19.
[13] 郭华, 周建平, 彭丽君. 槟榔芋淀粉理化特性初探. 食品科学, 2003, 24(1):51-55.
[14] Wongsagonsup R, Nateelerdpaisan T, Gross C, et al. Physicochemical properties and in vitro digestibility of flours and starches from taro cultivated in different regions of Thailand. International Journal of Food Science and Technology, 2020, 56(5):2395-2406.
doi: 10.1111/ijfs.14865
[15] Anwer M, Mcconnell M, Bekhit A E. New freeze-thaw method for improved extraction of water-soluble non-starch polysaccharide from taro (Colocasia esculenta):optimization and comprehensive characterization of physico-chemical and structural properties. Food Chemistry, 2021, 349(4):219-210.
[16] 姜绍通, 程元珍, 郑志, 等. 红芽芋营养成分分析及评价. 食品科学, 2012, 33(11):269-272.
[17] 朱苗, 李刚凤, 詹露菲, 等. 铜仁芋食用部位营养成分测定与分析. 铜仁学院学报, 2018, 20(3):20-23.
[18] 蔡建荣, 林金虎, 陈红玉, 等. 槟榔芋新品种‘汀芋1号’选育研究. 福建农业学报, 2015, 30(8):789-792.
[19] 戴南火. 槟榔芋品种比较试验. 福建农业科技, 2013(增1):53-54.
[20] 汪敏, 赵永富, 胡广玲, 等. 辐照处理对芋头发芽及食用品质的影响. 核农学报, 2016, 30(8):1534-1539.
doi: 10.11869/j.issn.100-8551.2016.08.1534
[21] 黄新芳, 孙亚林, 柯卫东, 等. 绿柄红芽多子芋品种比较筛选试验. 长江蔬菜, 2020(8):36-38.
[22] 宋江峰, 刘春泉, 姜晓青, 等. 基于主成分与聚类分析的菜用大豆品质综合评价. 食品科学, 2015, 36(13):12-17.
[23] 林蝉蝉, 何舟阳, 单文龙, 等. 基于主成分与聚类分析综合评价杨凌地区红色鲜食葡萄果实品质. 果树学报, 2020, 37(4):520-532.
[24] 黄新芳, 柯卫东. 芋种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
[25] 中华人民共和国农业部. 农作物优异种质资源鉴定评价技术规范芋:NY/T 2327-2013. 北京: 中国标准出版社, 2013.
[26] 李静, 聂继云, 李海飞, 等. Folin-酚法测定水果及其制品中总多酚含量的条件. 果树学报, 2008, 25(1):126-131.
[27] 邓菊庆, 柏春玲, 杨学芳, 等. 紫外可见分光光度法测定不同品种柑橘皮中总黄酮含量. 安徽农业科学, 2020, 48(9):210-211,252.
[28] 王鸿飞, 邵兴峰. 果品蔬菜贮藏与加工实验指导. 北京: 科学出版社, 2012.
[29] 王春霞, 孙领霞, 刘满英. 双波长分光光度法测定河北省多种粮豆作物中直、支链淀粉含量. 光谱实验室, 1999, 18(3):36-38.
[30] 宋萍, 蔡义民, 兰庆瑜, 等. 青海不同地区青稞秸秆中粗纤维含量的测定. 化学世界, 2009, 6(11):336-338.
[31] 中华人民共和国国家质量监督检验检疫总局. 食用菌中总糖含量的测定:GB/T 15672-2009. 北京: 中国标准出版社, 2009.
[32] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品中蛋白质的测定:GB 5009.5-2016. 北京: 中国标准出版社, 2016.
[33] 黄新芳, 柯卫东, 刘义满, 等. 芋优异种质资源鉴定评价研究. 长江蔬菜, 2013, 37(18):85-91.
[34] Yin J, Jiang L, Wang L, et al. A high-quality genome of taro [Colocasia esculenta (L.) Schott],one of the world's oldest crops. Molecular Ecology Resources, 2021, 21(15):68-77.
doi: 10.1111/1755-0998.13239
[35] Donkor E F, Nyadanu D, Akromah R, et al. Genotype- by-environment interaction and stability of taro [Colocasia esculenta (L.) Schott.] genotypes for yield and yield components. Ecological Genetics and Genomics, 2020, 17(21):100-107.
[36] 殷剑美, 张培通, 王立, 等. 芋头食味品质评价方法的建立与应用. 长江蔬菜, 2017, 24(7):11-17.
[37] 汪甚彤, 王丽, 孙敏, 等. 芋头叶柄泡菜泡制工艺优化及其香气物质研究. 湖北农业科学, 2021, 60(2):137-143,179.
[38] Bouwmeester H, Schuurink R C, Bleeker P M, et al. The role of volatiles in plant communication. The Plant Journal, 2019, 13(5):124-135.
[1] Zhao Xiaoqin, Jia Ruiling, Liu Junxiu, Liu Yanming, Wen Yinhua, Shi Lili, Zhang Juanning, Ma Ning. Agronomic Traits and Genetic Diversity Analysis of 120 Foxtail Millet Germplasms [J]. Crops, 2022, 38(6): 61-69.
[2] Zhao Kang, Yang Tao, Wang Honggang, Li Shengmei, Pang Bo, Ma Shangjie, Gao Wenwei. Evaluation on Salt Tolerance of 42 Sea-Island Cotton (Gossypium barbadense) Varieties in Xinjiang during Germination Period [J]. Crops, 2022, 38(5): 27-33.
[3] Song Quanhao, Jin Yan, Song Jiajing, Chen Jie, Zhao Lishang, Bai Dong, Chen Liang, Zhu Tongquan. Comprehensive Evaluation of 35 Synthetic Hexaploid Wheat Cultivars [J]. Crops, 2022, 38(4): 69-76.
[4] Xiao Mingkun, Liu Guanghua, Song Jiming, Liu Qian, Duan Chunfang, Jiang Tailing, Zhang Linhui, Yan Wei, Shen Shaobin, Zhou Yingchun, Xiong Xiankun, Luo Xin, Bai Lina, Li Yuexian. Analysis of Agronomic Characteristics of Different Cassava Varieties (Lines) and Screening of High-Yielding Varieties (Lines) [J]. Crops, 2022, 38(4): 77-82.
[5] Zhao Lirong, Ma Ke, Zhang Liguang, Tang Sha, Yuan Xiangyang, Diao Xianmin. Analysis of Agronomic Traits and Quality of Foxtail Millet Varieties in Different Ecological Regions [J]. Crops, 2022, 38(2): 44-53.
[6] Duan Yajuan, Cao Shiliang, Yu Tao, Li Wenyue, Yang Gengbin, Wang Chengbo, Liu Baomin, Liu Changhua. Identification of Salt Tolerance during Germination of Maize Inbred Lines [J]. Crops, 2022, 38(1): 213-219.
[7] Li Wenlue, Chen Changli, Luo Xiahong, Liu Tingting, An Xia, Jin Guanrong, Zhu Guanlin. Genetic Diversity Analysis of Phenotypic Characteristics of Kenaf Resources in Zhejiang Province [J]. Crops, 2022, 38(1): 50-55.
[8] Tang Hongqin, Li Zhongyi, Dong Wenbin, Wei Caihui, He Tieguang, Meng Yancheng, Tang Hailing, Mo Yongcheng. Effects of Different Intercropping Modes of Green Manure Replacing Chemical Fertilizer on Cassava (Manihot esculenta Crantz) Traits and Yield [J]. Crops, 2021, 37(4): 184-190.
[9] Du Xiaoyu, Li Nannan, Zou Shaokui, Wang Lina, Lü Yongjun, Zhang Qian, Li Shuncheng, Yang Guangyu, Han Yulin. Comprehensive Analysis of Main Traits of Newly Bred Wheat Varieties (Lines) in Southern Huang-Huai Region [J]. Crops, 2021, 37(4): 38-45.
[10] Zhou Yuexia, Fan Yu, Ruan Jingjun, Yan Jun, Lai Dili, Peng Yan, Tang Yong, Weng Wenfeng, Cheng Jianping. Correlation Analysis of Oat Grain Nutrition and Agronomic Traits [J]. Crops, 2021, 37(2): 165-172.
[11] Bai Wei, Hu Yang, Yang Sumei, Zhang Baoying, Cui Jinli, Jin Tao, Bai Haihua. Analysis on Agronomic Characteristics of Confectionery Sunflower Local Resources in Northwest Hebei [J]. Crops, 2021, 37(1): 54-59.
[12] Gao Jie, Feng Guangcai, Li Xiaorong, Li Qingfeng, Peng Qiu. Phenotypic Diversity and Clustering Analysis of Sorghum Germplasm Resources in Different Regions of Guizhou Province [J]. Crops, 2020, 36(6): 54-60.
[13] Yang Xuele, Zhang Lu, Li Zhiqing, He Luqiu. Diversity Analysis of Tartary Buckwheat Germplasms Based on Phenotypic Traits [J]. Crops, 2020, 36(5): 53-58.
[14] Sun Daowang, Wang Yanqing, Hong Bo, Lu Wenjie, Yin Guifang, Wang Lihua. Principal Component Analysis and Cluster Analysis of Agronomic Traits of Winter Sowing Oats in Yunnan [J]. Crops, 2020, 36(5): 80-87.
[15] Zhang Yang, Zhang Wei, Zhao Weijun, Shao Rongfeng, Wang Guan, Xue Dingding, Li Jinmei. Variety Screening and Study of Cultivation Technology for Forage Triticale Varieties Based on Principal Component and Grey Relation Analysis [J]. Crops, 2020, 36(3): 117-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!