Crops ›› 2023, Vol. 39 ›› Issue (6): 243-251.doi: 10.16035/j.issn.1001-7283.2023.06.033

Previous Articles     Next Articles

Relationships between Dry Matter Accumulation, Transport and Yield of Confectionary Sunflower and Response to Water and Nitrogen Interactions

Wu Sheng1(), Duan Yu2(), Zhang Tingting2, An Hao2, Zhang Jun2, Liang Junmei2, Zhang Sheng1()   

  1. 1College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
    2Institute of Resources, Environment and Sustainable Development, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, Inner Mongolia, China
  • Received:2022-11-22 Revised:2022-12-22 Online:2023-12-15 Published:2023-12-15

Abstract:

In order to investigate the effects of irrigation and nitrogen application on dry matter accumulation and translocation in sunflowers, as well as the effects of these processes on yield formation, confectionary edible sunflower Longkui 27 was studied in the dry farming area of Wuchuan, which is located at the northern foot of the Yin Mountains in Inner Mongolia. The study utilized a split-zone experimental design, with three irrigation patterns serving as the primary factor and three levels of nitrogen application serving as the secondary factor. The results showed that applying N through irrigation increased the amount of dry matter that accumulated in the sunflower stems and leaves, which in turn increased yield. The higher the irrigation amount, the more dry matter accumulated in the stems and leaves. Multiple regression analysis was performed to analyze the characteristic values of dry matter accumulation and transfer of each organ and yield. The multiple regression equation was established, and the equation was simulated well. The findings demonstrated that while variations in irrigation, nitrogen application, and water-nitrogen interactions all had a considerable impact on the translocation of dry matter in the stems and leaves, the main factor contributing to the yield increase was photosynthetic production of leaves after flowering.

Key words: Confectionary sunflower, Drip irrigation, Nitrogen fertilizer, Recommended fertilizer application, Dry matter transport, Supplementary irrigation

Table 1

Precipitation during the growth period"

项目
Item
6月June 7月July 8月August 9月September 合计
Total
中旬
Middle
下旬
Late
上旬
Early
中旬
Middle
下旬
Late
上旬
Early
中旬
Middle
下旬
Late
上旬
Early
中旬
Middle
降水量Precipitation (mm) 12.7 41.4 9.2 4.8 10.8 16.9 26.1 16.2 1.6 25.0 164.8
有效积温
Effective accumulative temperature (℃)
156.2 210.8 345.3 439.6 556.9 687.1 766.9 821.3 863.4 926.4 984.8

Table 2

The effects of dry matter accumulation and translocation with different treatment on confectionary sunflower"

处理Treatment DMmax (kg/hm2) FDM (kg/hm2) DMT (kg/hm2) DMRE (%) CRG (%)
W0 N0 2060.3e 1492.0d 568.3b 26.90a 18.09b
N1 2117.6e 2016.8cd 100.7c 4.73de 2.71c
N2 2612.1de 1949.5cd 662.7b 25.09ab 18.51b
W1 N0 2903.7d 2399.5c 504.2b 17.56bc 15.69b
N1 3689.2bc 3050.0b 639.2b 17.27bc 15.57b
N2 3550.5bc 2381.7c 1168.9a 32.64a 30.03a
W2 N0 3096.4cd 3001.9b 94.4c 3.10e 2.33c
N1 4382.7a 3803.4a 579.3b 13.08cd 12.92b
N2 3986.1ab 3395.9ab 590.2b 14.87c 13.62b
水分Irrigation W0 2263.3c 1819.4c 443.9b 18.90a 13.11ab
W1 3381.1b 2610.4b 770.8a 22.49a 20.43a
W2 3821.7a 3400.4a 421.3b 10.35b 9.62b
氮肥Nitrogen N0 2686.8b 2297.8b 389.0b 15.85b 12.04b
N1 3396.5a 2956.7a 439.7b 11.69b 10.40b
N2 3382.9a 2575.7b 807.3a 24.20a 20.72a
显著性检验(F值)Significance test (F-value)
水分Irrigation 53.90** 134.78** 7.44* 9.67* 8.39*
氮肥Nitrogen 10.48** 8.60** 13.38** 16.84** 11.83**
水分×氮肥Irrigation×Nitrogen 2.20 0.77 5.90** 10.20** 6.27**

Table 3

The effects of dry matter accumulation and translocation of leaf with different treatment on confectionary sunflower"

处理Treatment DMmax (kg/hm2) FDM (kg/hm2) DMT (kg/hm2) DMRE (%) CRG (%)
W0 N0 1760.8cd 861.9d 898.9ab 50.57a 28.65a
N1 1909.6cd 1257.1bc 652.4abcd 34.06bcd 17.60bc
N2 2071.8bcd 1150.9cd 921.0ab 44.45ab 25.94a
W1 N0 1646.5d 1067.4cd 579.0cd 34.32bcd 17.05bc
N1 2493.5ab 1565.4ab 928.1a 36.59bc 22.49ab
N2 2129.3bc 1237.8bc 891.4abc 41.74ab 22.82ab
W2 N0 1946.4cd 1376.7bc 569.7b 29.49cd 14.29c
N1 2641.3a 1885.7a 755.7abcd 28.33cd 17.06bc
N2 2393.5ab 1786.1a 607.4bcd 25.27d 13.78c
水分Irrigation W0 1914.1b 1090.0b 824.1a 43.02a 24.06a
W1 2089.8ab 1290.2b 799.5a 37.55ab 20.79a
W2 2327.1a 1682.8a 644.3a 27.70b 15.04b
氮肥Nitrogen N0 1784.6b 1102.0c 682.6a 38.13a 20.00a
N1 2348.2a 1569.4a 778.7a 32.99a 19.05a
N2 2198.2a 1391.6b 806.6a 37.15a 20.85a
显著性检验(F值)Significance test (F-value)
水分Irrigation 4.74 9.74* 2.77 8.15* 11.51*
氮肥Nitrogen 12.45** 24.35** 1.09 2.05 0.37
水分×氮肥Irrigation×Nitrogen 1.78 0.85 2.40 3.06 3.39*

Table 4

Distribution of above-ground dry matter in confectionary sunflower with different treatments"

处理
Treatment
开花期干物质分配
Dry matter partitioning at anthesis (%)
成熟期干物质分配
Dry matter partitioning at maturity (%)
茎Stem 叶Leaf 花盘Flower plate 茎Stem 叶Leaf 空盘Empty plate 籽粒Seed
W0 N0 44.25bc 34.87bc 20.88a 21.53b 12.41a 20.89d 45.17a
N1 44.45abc 33.87c 21.68a 22.13b 13.84a 23.31abcd 40.72b
N2 43.15c 38.09abc 18.76ab 22.21b 13.11a 24.38ab 40.31b
W1 N0 47.61a 36.73bc 15.66bc 26.43a 12.72a 21.75cd 39.10b
N1 46.94ab 44.78a 14.72cd 26.18a 13.39a 25.21a 35.22cd
N2 47.20ab 36.00bc 13.34cd 24.54ab 12.74a 22.62bcd 40.10b
W2 N0 47.14ab 40.47abc 14.44cd 27.65a 12.65a 22.61bcd 37.10bc
N1 46.98ab 41.84ab 13.19cd 27.79a 14.73a 24.91ab 32.56d
N2 46.49ab 41.02ab 12.12d 27.09a 14.20a 23.70abc 35.02cd
水分Irrigation W0 43.95b 35.61a 20.44a 21.95b 13.12a 22.86a 42.07a
W1 47.25a 39.17a 14.57b 25.72a 12.95a 23.19a 38.14b
W2 46.87ab 41.11a 13.25b 27.51a 13.86a 23.74a 34.89c
氮肥Nitrogen N0 46.33a 37.36a 16.99a 25.20a 12.59b 21.75b 40.45a
N1 46.12a 40.16a 16.53ab 25.37a 13.99a 24.48a 36.17b
N2 45.61a 38.37a 14.74b 24.61a 13.35ab 23.57a 38.48ab
显著性检验(F值)Significance test (F-value)
水分Irrigation 5.41 3.11 26.42** 13.24* 0.38 0.68 26.64**
氮肥Nitrogen 0.46 1.22 3.31 0.38 4.49* 8.29** 8.12**
水分×氮肥Irrigation×Nitrogen 0.17 2.32 0.29 0.35 0.57 1.42 1.55

Fig.1

Relationship between economic coefficient and the DMRE of leaves and stems Correlation coefficient critical values r0.05=0.3809, r0.01=0.4869, r0.001=0.5974, n=27;“*”and“***”mean significant at α=0.05 and α=0.001 levels, respectively; the same below"

Table 5

Correlation matrix between dry matter transport, accumulation of each organ and yield"

因子Factor X1 X2 X3 X4 X5 X6 X7
X2 0.4043*
X3 0.7235*** 0.2233
X4 0.0283 0.4093* 0.4532*
X5 0.9060*** 0.2235 0.7551*** -0.0612
X6 -0.2612 0.3463 -0.5266** 0.0454 -0.3797
X7 0.8818*** 0.0273 0.8092*** -0.0674 0.9281*** -0.5901**
Y 0.7609*** 0.0717 0.7950*** 0.0904 0.7843*** -0.5796** 0.9131***

Table 6

Partial correlation coefficients of the regression equations and t-tests"

相关关系
Correlation
偏相关系数
Partial correlation coefficient
t检验值
t-test
P
P-value
r(y, X1) -0.8647 7.5033 0.0001
r(y, X2) 0.8613 7.3882 0.0001
r(y, X3) -0.6519 3.7470 0.0013
r(y, X4) 0.6382 3.6131 0.0017
r(y, X5) -0.8144 6.1179 0.0001
r(y, X6) 0.7138 4.4421 0.0003
r(y, X7) 0.9414 12.1707 0.0001

Fig.2

Simulated and actual values of the multiple regression equation"

Table 7

Path analysis of assimilate transport characteristic quantities on yield"

因子
Factor
直接通径系数
Direct path coefficient
间接通径系数Indirect path coefficient
X1 X2 X3 X4 X5 X6 X7
X1 -1.3397 0.2392 -0.3688 0.0081 -0.7442 -0.0815 3.0479
X2 0.5917 -0.5417 -0.1138 0.1168 -0.1836 0.1080 0.0942
X3 -0.5098 -0.9694 0.1321 0.1294 -0.6203 -0.1643 2.7972
X4 0.2854 -0.0379 0.2422 -0.2311 0.0503 0.0142 -0.2328
X5 -0.8214 -1.2138 0.1322 -0.3849 -0.0175 -0.1185 3.2082
X6 0.3119 0.3500 0.2049 0.2685 0.0130 0.3119 -2.0398
X7 3.4566 -1.1813 0.0161 -0.4125 -0.0192 -0.7624 -0.1841

Fig.3

Relationship between economic coefficient and seed yield “**”means significant at α=0.01 level"

[1] 董钻, 王术. 作物栽培学总论:第3版. 北京: 中国农业出版社, 2018.
[2] 李政, 呼格吉勒图, 李文通. 阴山北麓农牧交错带1980年以来气候变化特征及对农作物产量的影响——以武川县为例. 农技服务, 2017, 34(5):91-92.
[3] Andraski T, Bundy L, Brye K. Crop management and corn nitrogen rate effects on nitrate leaching. Journal of Environmental Quality, 2000, 29(4):1096-1103.
[4] 高亚军, 郑险峰, 李世清, 等. 农田秸秆覆盖条件下冬小麦增产的水氮条件. 农业工程学报, 2008, 24(1):55-59.
[5] 曾文治. 向日葵水、氮、盐耦合效应及其模拟. 武汉: 武汉大学, 2015.
[6] 周卫, 艾超. 养分资源高效利用机理与途径. 北京: 科学出版社, 2018:515.
[23] 周慧文, 陈荣发, 范业赓, 等. 不同施氮水平下甘蔗内源激素、产量和糖分的变化特征. 热带作物学报, 2019, 40(11):2142-2148.
[7] 段玉, 张君, 梁俊梅, 等. 采用QUEFTS建立向日葵推荐施肥模型养分特征参数. 植物营养与肥料学报, 2020, 26(7):1349-1359.
[8] 段玉, 范霞, 安昊, 等. 向日葵养分专家系统推荐施肥效应研究. 中国油料作物学报, 2021, 43(6):1108-1114.
doi: 10.19802/j.issn.1007-9084.2020196
[9] 徐新朋, 张佳佳, 丁文成, 等. 基于产量反应的粮食作物养分专家系统微信版应用. 中国农业信息, 2019, 31(6):74-84.
[10] 周玲, 王朝辉, 李富翠, 等. 不同产量水平旱地冬小麦品种干物质累积和转移的差异分析. 生态学报, 2012, 32(13):4123-4131.
[11] 马冬云, 郭天财, 王晨阳, 等. 施氮量对冬小麦灌浆期光合产物积累、转运及分配的影响. 作物学报, 2008, 34(6):1027- 1033.
[12] 赵轩微, 赵雅杰, 田振东, 等. 向日葵干物质转运及产量对播种期和栽培密度的响应. 作物杂志, 2021(3):185-189.
[13] 张均华, 刘建立, 张佳宝, 等. 施氮量对稻麦干物质转运与氮肥利用的影响. 作物学报, 2010, 36(10):1736-1742.
doi: 10.3724/SP.J.1006.2010.01736
[14] 张磊, 孔丽丽, 侯云鹏, 等. 施氮水平对玉米开花后干物质积累、转运及土壤无机氮含量的影响. 玉米科学, 2020, 28(4):155-164.
[15] 盖钧镒. 试验统计方法:第4版. 北京: 中国农业出版社, 2016:390.
[16] 王曙光, 谢成林, 谢仁康, 等. 杂交中籼稻产量与主要经济性状关系的分析. 中国稻米, 2009(2):11-14.
[17] Gan S, Amasino R M. Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiology, 1997, 113(2):313.
pmid: 12223609
[18] Noodén L D, Guiamét J J, John I. Senescence mechanisms. Physiologia Plantarum, 1997, 101(4):746-753.
doi: 10.1111/ppl.1997.101.issue-4
[19] 杨建昌, 张建华. 促进稻麦同化物转运和籽粒灌浆的途径与机制. 科学通报, 2018, 63(增2):2932-2943.
[20] 杨建昌, 张建华. 水稻高产节水灌溉. 北京: 科学出版社, 2019:199.
[21] 张振博, 屈馨月, 于宁宁, 等. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响. 作物学报, 2022, 48(9):2366-2376.
doi: 10.3724/SP.J.1006.2022.13056
[22] 贾志锋, 马祥, 琚泽亮, 等. 施氮量和播种量对燕麦光合特性、激素含量及种子产量的影响. 草地学报, 2021, 29(2):293-302.
doi: 10.11733/j.issn.1007-0435.2021.02.010
[1] Zhao Lijie, Zhao Haiyan, Han Genlan, Wang Jiang, Nie Mengʼen, Du Huiling, Yuan Xiangyang, Dong Shuqi. Effects of Nitrogen Fertilizer Combined with Organic Fertilizer on Quality of Millet [J]. Crops, 2023, 39(6): 224-232.
[2] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[3] Hu Rui, Hu Xiangyu, Fu Youqiang, Ye Qunhuan, Pan Junfeng, Liang Kaiming, Li Meijuan, Liu Yanzhuo, Zhong Xuhua. Effects of Nitrogen Fertilizer Management on Rice Root Growth and Development and Its Relationships with Nitrogen Fertilizer Uptake and Utilization [J]. Crops, 2023, 39(5): 179-186.
[4] Chen Yue, Gong Liang, Jin Dandan, Zhang Xin, Li Bo, Zou Xiaojin, Sui Shijiang, Ye Xin, Liu Yan. Annual Variation of Nitrogen Fertilizer Threshold for Optimal Yield of Northern Japonica Rice and Its Influencing Factors Analysis [J]. Crops, 2023, 39(4): 144-151.
[5] Hu Xinyuan, Liu Yongqiang, Xie Kuizhong, Sun Xiaohua, Luo Aihua. Effects of Organic Fertilizer Replacing Nitrogen Fertilizer on Soil Physical Chemistry Properties and Potato Quality under Continuous Cropping in Arid Area [J]. Crops, 2023, 39(4): 159-164.
[6] Wang Liping, Bai Lanfang, Wang Tianhao, Wang Xiaoxuan, Bai Yunhe, Wang Yufen. Effects of Different Nitrogen Levels on Nitrogen Accumulation and Transport in Silage Maize [J]. Crops, 2023, 39(4): 165-173.
[7] Le Lihong, Liu Kaili, Chen Zhongping, Wang Binqiang, Tang Zhou, Cheng Feihu, Zhang Kun. Effects of Application Time of N Fertilizer at Panicle Differentiation Stage on the Nitrogen Use Efficiencies, Yield and Quality of One-Season Indica-Japonica Hybrid Rice [J]. Crops, 2023, 39(4): 195-201.
[8] Liu Ying, Gu Yunyi, Zhang Weiyang, Yang Jianchang. Research Advances in the Effects of Water and Nitrogen and Their Interaction on the Grain Yield, Water and Nitrogen Use Efficiencies of Wheat [J]. Crops, 2023, 39(4): 7-15.
[9] Zhang Guozhong, Li Juan, Li Yucai, Jin Shoulin, Hong Ruke, Huang Dajun, Pu Shihuang, Shi Congbo, Duan Zilin, Ma Di, Chen Lijuan. The Effects of Nitrogen Fertilizer Reduction and Transplanting Density on Yield and Eating Quality of Japonica Hybrid Rice Dianheyou 615 [J]. Crops, 2023, 39(3): 109-115.
[10] Zhang Panpan, Li Chuan, Zhang Meiwei, Zhao Xia, Huang Lu, Liu Jingbao, Qiao Jiangfang. Effects of Nitrification Inhibitor on the Nitrogen Concentration and Yield in Summer Maize Plants and Soil under Reduced Nitrogen Application [J]. Crops, 2023, 39(2): 145-150.
[11] Yuan Shuai, Su Yuting, Chen Pingping, Yi Zhenxie. Effects of Nitrogen Management on Yield Formation and Rice Quality of Double Cropping Hybrid Rice in Southern Hunan [J]. Crops, 2023, 39(2): 91-99.
[12] Jin Haiyang, Zhang Suyu, Cui Jingyu, Li Xiangdong, Yue Junqin, Zhang Deqi, Yang Cheng, Fang Baoting, Wang Hanfang, Qin Feng. Regulatory Effects of Different Nitrogen Management Methods on Quality of Strong and Medium-Strong Gluten Wheat [J]. Crops, 2023, 39(1): 212-218.
[13] Yang Yan, Xu Ningsheng, Pan Zhechao, Li Yanshan, Yang Qiongfen, Zhang Lei. Effects of Paclobutrazol and Nitrogen on Yield and Economic Benefit of Potato [J]. Crops, 2022, 38(6): 139-144.
[14] Chong Haotian, Shang Cheng, Zhang Yunbo, Huang Liying. Effects of Dense Planting with Reduced Nitrogen Application on Spikelet Formation of Different Types of Rice Varieties [J]. Crops, 2022, 38(6): 226-233.
[15] Zhang Te, Li Guangwei, Li Kexin, Li Xinxin, Zhao Qiang. Effects of DPC through Drip Irrigation on Growth and Yield of Cotton [J]. Crops, 2022, 38(4): 124-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!