Crops ›› 2023, Vol. 39 ›› Issue (5): 24-29.doi: 10.16035/j.issn.1001-7283.2023.05.004

Previous Articles     Next Articles

Gene Differential Expression Analysis of TMS5 in the Fertility Conversion of Wheat BNS Sterile Line

Liu Shuhan1,2(), Chen Lei1, Zhang Jianchao2, Hu Gan2, Sun Junyan1, Liu Dongtao3(), Wang Junwei2()   

  1. 1School of Agriculture, Xinyang Agriculture and Forestry University, Xingyang 464000, Henan, China
    2College of Agronomy, Northwest A & F University/National Yangling Agricultural Biotechnology & Breeding Center/Yangling Branch of State Wheat Improvement Center/Wheat Breeding Engineering Research Center, Ministry of Education/Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, Shaanxi, China
    3Xuzhou Institute of Agricultural Science, Xuhuai District, Jiangsu Province, Xuzhou 221131, Jiangsu, China
  • Received:2022-03-22 Revised:2022-07-22 Online:2023-10-15 Published:2023-10-16

Abstract:

The TMS5 is a thermosensitive sterility gene of rice, which encodes a RNase Z protein. We analyzed the expression differences of wheat TMS5 gene in wheat BNS sterile line and fertile line at different developmental stages of anthers, aiming to provide a theoretical basis for revealing the mechanism of wheat BNS thermosensitive sterility. Using the sterile and fertile anthers of wheat BNS as test materials, a 408bp sequence of wheat TMS5 was cloned, which was 80% identical to the sequence of the TMS5 in rice. Compared the TMS5 expression in stages of wheat anther development including tetrad, early mononuclear, late mononuclear, dinuclear and trinuclear, the results showed that the TMS5 was mainly expressed in the tetrad stage, and the TMS5 expression level in anthers of fertile lines was much higher than that of sterile lines. The wheat TMS5 gene was closely related to the pollen abortion of wheat BNS thermosensitive sterile line, and the tetrad stage was the key period of TMS5’s regulation.

Key words: Wheat, Photo-thermo-sensitive male sterility, BNS, TMS5 gene, qRT-PCR

Table 1

Sequence of the primers"

引物Primer 序列(5′-3′)Sequence (5′-3′)
TMS5-1F CCCCTCCCCAGCCATAAAG
TMS5-1R AAGGCCCTGACCTTGAGATC
TMS5-2F CCATAAAGCGTAAGGCGAAGC
TMS5-2R GCGTGCGAGATGAAGAGGAA
18S-F CGTCCCTGCCCTTTGTACAC
18S-R AACACTTCACCGGACCATTCA

Fig.1

Alignment result of TMS5 sequence TMS5-CDs indicates the sequence of this gene in rice"

Fig.2

Semi-quantitative PCR analysis of TMS5 gene STe: the tetrad stage in sterile line; SUe: early mononuclear in sterile line; SUl: late mononuclear in sterile line; SBi: dinuclear in sterile line; STr: trinuclear in sterile line; FTe: the tetrad stage in fertile line; FUe: early mononuclear in fertile line; FUl: late mononuclear in fertile line; FBi: dinuclear in fertile line; FTr: trinuclear in fertile line"

Fig.3

Melting curves of 18S and TMS5"

Fig.4

Relative expressions of TMS5 gene during the various periods of anther development The different letters indicate significant difference at 0.05 level"

[1] 付志远, 秦永田, 汤继华. 主要作物光温敏核雄性不育基因的研究进展与应用. 中国生物工程杂志, 2018, 38(1):115-125.
[2] 赵昌平. 中国杂交小麦研究现状与趋势. 中国农业科技导报, 2010, 12(2):5-8.
[3] 杨木军, 李绍祥, 刘琨, 等. 云南温光敏两系杂交小麦制种技术研究. 麦类作物学报, 2006, 26(4):27-31.
[4] 任勇, 李生荣, 陶军, 等. 温光型两系杂交小麦绵杂麦168制种技术研究. 麦类作物学报, 2011, 31(1):30-34.
[5] 姬俊华, 茹振钢, 张改生, 等. 小麦温敏雄性不育系BNY的花粉育性及自交结实性研究. 麦类作物学报, 2004, 24(2):24-26.
[6] 薛香, 茹振刚. 播期对温敏不育系BNY育性的影响. 河南职业师范技术学院学报, 2004, 32(1):12-14.
[7] 张自阳, 胡铁柱, 冯素伟, 等. 温敏核雄性不育小麦BNS的育性转换规律初探. 河南农业科学, 2010(7):5-9.
doi: 10.3969/j.issn.1004-3268.2010.07.001
[8] 宁江权, 茹振刚, 郑炜君, 等. BNS小麦雄性不育性表现及其恢复性的研究. 麦类作物学报, 2011, 31(4):642-647.
[9] 杜黎君, 孙海燕, 苏晴, 等. 15℃以上平均气温显著影响温敏雄性不育小麦BNS的育性转换. 中国农业气象, 2016, 37(5):555-563.
[10] 张保雷, 张卫东, 高庆荣, 等. 温光敏雄性不育小麦BNS育性的遗传效应分析. 中国农业科学, 2013, 46(8):1533-1542.
doi: 10.3864/j.issn.0578-1752.2013.08.002
[11] 王震, 范晓静, 张淼, 等. ATP合成相关基因在小麦BNS不育系育性转换中的差异表达. 作物学报, 2014, 40(8):1501-1505.
[12] 白羿雄, 宋瑜龙, 牛艳波, 等. 温敏核雄性不育小麦中不育系和可育系花药基因的表达谱分析. 农业生物技术学报, 2015, 23(8):1011-1019.
[13] 曹银萍, 杨靖, 卫笑, 等. 小麦BNS雄性不育显性遗传方式的观察与分析. 中国农业科技导报, 2019, 21(7):19-30.
doi: 10.13304/j.nykjdb.2018.0515
[14] Jia J H, Li C Y, Deng Q Y, et al. Rapid constructing a genetic linkage map by AFLP technique and mapping a new gene tms5. Acta Botanica Sinica, 2003, 45(5):614-620.
[15] Wang Y G, Xing Q H, Deng Q Y, et al. Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5. Theoretical and Applied Genetics, 2003, 107(5):917-921.
doi: 10.1007/s00122-003-1327-8 pmid: 12827251
[16] Zhou H, Liu Q J, Li J, et al. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Research, 2012, 22:649-650.
doi: 10.1038/cr.2012.28 pmid: 22349461
[17] Zhou H, Zhou M, Yang Y Z, et al. RNase ZS1 processes UbL40mRNAs and controls thermosensitive genic male sterility in rice. Nature Communications, 2014, 5:4884-4892.
doi: 10.1038/ncomms5884 pmid: 25208476
[18] 张龙雨, 李红霞, 张改生, 等. 黏类小麦细胞质雄性不育相关基因cMDH的克隆与表达分析. 作物学报, 2009, 35(9):1620-1627.
[19] Ding J H, Lu Q, Ouyang Y D, et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7):2654-2659.
[20] 陈镇, 马雪丽, 曾汉来. 水稻光温敏核不育调控基因及作用机理研究进展. 世界科技研究与发展, 2015, 37(1):97-104.
[21] 周美兰, 唐启源, 程尧楚, 等. 光温敏核不育小麦ES-10雄性败育机制研究. 湖南农业大学学报, 1997, 23(2):117-122.
[22] 李云伏.小麦光温敏不育系BS20. BS210的遗传特性及不育候选基因的分离研究. 武汉:华中农业大学, 2006.
[23] 张亚勤, 宗学风, 余国东, 等. 重庆温光敏核不育小麦C49S的育性稳定性分析. 麦类作物学报, 2007, 27(5):787-790.
[24] 李柯, 周菊红, 何蓓茹, 等. YS型小麦温敏雄性不育系育性控制遗传模型的初步分析. 麦类作物学报, 2009, 29(5):770-776.
[25] 庞启华, 黄光永, 李生荣, 等. 两系杂交小麦绵阳32的选育及其配套技术. 中国种业, 2003(12):50-51.
[26] 李紫良, 张建朝, 李政, 等. 小麦转录因子基因TaERF7的克隆及其表达分析. 西北植物学报, 2020, 40(2):210-217.
[1] Wang Yifan, Ren Ning, Dong Xiangyang, Zhao Yanan, Ye Youliang, Wang Yang, Huang Yufang. Effects of Controlled-Release and Ordinary Urea on Wheat Yield, Nitrogen Absorption and Economic Benefit [J]. Crops, 2023, 39(5): 117-123.
[2] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[3] Huang Jie, Ge Changbin, Wang Jun, Cao Yanyan, Qiao Jiliang, Liao Pingʼan, Song Danyang, Lu Wenying. Simulation Model of Relative Meteorological 1000-Grain Weight of Wheat of Luohe Based on Principal Component Regression [J]. Crops, 2023, 39(5): 212-218.
[4] Zhang Dongxu, Hu Danzhu, Yan Jinlong, Feng Liyun, Wu Zhiyuan, Zhang Junling, Li Yanhua. Effects of Spraying Streptomyces on Yield and Photosynthetic Characteristics of Late-Sown Wheat under Different Crop Rotations [J]. Crops, 2023, 39(5): 255-263.
[5] Song Guicheng, Yu Guihong, Zhang Peng, Ma Hongxiang. Evaluation on Waterlogging Resistance of Different Wheat Varieties (Lines) at Jointing Stage [J]. Crops, 2023, 39(5): 30-36.
[6] Ge Changbin, Qin Suyan, Qiao Jiliang, Wang Jun, Qi Shuangli, Lu Wenying, Zhang Zhenyong. Comparative Analysis of Agronomic Traits, Quality and Disease Evolution of Approved Wheat Varieties in Southern Henan and Southern Huai River in Jiangsu from 2001 to 2021 [J]. Crops, 2023, 39(5): 49-58.
[7] Yang Cheng, Zhang Deqi, Du Simeng, Zhang Lijia, Jin Haiyang, Li Ying, Shao Yunhui, Wang Hanfang, Fang Baoting, Li Xiangdong, Liu Meijun. Effects of Dark and Strong Light Dehydration on the Photosystem Activity in Wheat Leaves in Vitro [J]. Crops, 2023, 39(5): 98-103.
[8] Zhang Mingwei, Ding Jinfeng, Zhu Xinkai, Guo Wenshan. Analysis of High-Yielding Planting Density and Nitrogen Application in Super-Late Sowing Wheat Following Rice [J]. Crops, 2023, 39(4): 126-135.
[9] Song Xiao, Zhang Keke, Yue Ke, Huang Chenchen, Huang Shaomin, Sun Jianguo, Guo Tengfei, Guo Doudou, Zhang Shuiqing, Pei Minnan. Differences of Enzyme Activities and Bacterial Communities in Rhizosphere Soil of Wheat Varieties with Different Nitrogen Efficiency [J]. Crops, 2023, 39(4): 188-194.
[10] Fu Xiaoyi, Wang Hongguang, Liu Zhilian, Li Dongxiao, He Mingqi, Li Ruiqi. Effects of Water Stress on Growth of Different Wheat Varieties at Seedling Stage and Selection of Drought Resistant Varieties [J]. Crops, 2023, 39(4): 224-229.
[11] Chen Yuanyuan, Li Guangsheng, Liu Yang, He Yuqi, Zhou Meiliang, Fang Zhengwu. Molecular Cloning and Functional Identification of Resistance Gene FtTIR of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(4): 44-51.
[12] Liu Ying, Gu Yunyi, Zhang Weiyang, Yang Jianchang. Research Advances in the Effects of Water and Nitrogen and Their Interaction on the Grain Yield, Water and Nitrogen Use Efficiencies of Wheat [J]. Crops, 2023, 39(4): 7-15.
[13] Li Hongsheng, Li Shaoxiang, Yang Zhonghui, Yang Jiali, Liu Kun, Xiong Shian, Li Fuqian, Guo Hui, Yang Mujun. Comparison ofPhenotype and Marker Detection in Seed Purity of Thermo-Photo Sensitive Two-Line WheatHybrids [J]. Crops, 2023, 39(4): 71-76.
[14] Zhao Pengpeng, Li Luhua, Ren Mingjian, An Chang, Hong Dingli, Li Xin, Xu Ruhong. Bioinformatics and Expression Analysis of GzCIPK7-5B Gene in Wheat [J]. Crops, 2023, 39(4): 77-84.
[15] Li Haoran, Li Ruiqi, Li Yanming. Review of the Changes of Wheat Row Spacing Forms and the Affecting Factors in Haihe Plain [J]. Crops, 2023, 39(3): 12-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!