Crops ›› 2024, Vol. 40 ›› Issue (2): 242-248.doi: 10.16035/j.issn.1001-7283.2024.02.030

Previous Articles     Next Articles

Screening of Antagonistic Bacteria against Potato Bacterial Wilt and Study on Its Control Effect in Greenhouse

Li Sheng(), Li Xiang, Zhu Meiru, Wang Xia, Li Haoyang, Tan Xinru, Wang Haiyan()   

  1. College of Life Sciences, Sichuan University/Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, Sichuan, China
  • Received:2023-03-06 Revised:2023-03-23 Online:2024-04-15 Published:2024-04-15

Abstract:

Bacterial wilt of potato is a destructive soil-borne disease caused by Ralstonia solanacearum. Screening antagonistic bacteria against pathogen is a vital work for the biocontrol of potato bacterial wilt. Six isolates with good inhibitory effect on three R.solanacearum strains of potato, tomato and tobacco were isolated from the rhizosphere soil of healthy potato, tomato, eggplant and pepper plants. They were identified as Lysinibacillus sp., Pseudomonas sp. and Kosakonia sp. through molecular detection, and it had the ability to produce protease, siderophor and biofilm, respectively. In greenhouse, strain FC-17 significantly reduced disease incidence by 79.46% and 70.83% on potato cultivars “Longshu 7” and “Atlantic”, respectively, indicating good potential for biocontrol of potato bacterial wilt.

Key words: Potato bacterial wilt, Antagonistic bacteria, Antimicrobial metabolites, Control effect

Table 1

Experimental design of pot control effect"

处理Treatment 添加物(盆)Supplement (pot)
R 20 mL无菌水+10 mL青枯菌菌液
FR 20 mL拮抗菌菌液+10 mL青枯菌菌液
F 20 mL拮抗菌菌液
CK 30 mL无菌水

Fig.1

Inhibitory effect of antagonistic bacteria against three strains of R.solanacearum Agar medium (a)-(c) were embedded with R. solanacearum strains from potato, tomato and tobacco, respectively. The loading volume of antagonistic bacteria was 50 μL (OD600nm=5.0) per well."

Table 2

Inhibition zone diameter of six antagonistic bacterias against three strains of R.solanacearum mm"

菌株名称
Strain name
青枯菌来源Source of R. solanacearum
马铃薯Potato 番茄Tomato 烟草Tobacco
XC-1 4.40±0.74c 3.91±0.30d 4.38±0.74d
XC-2 7.38±0.98b 9.41±0.45b 9.03±0.59b
FC-11 6.61±0.34b 5.54±0.82c 6.64±0.34c
FC-17 6.90±0.79b 8.26±0.62b 8.41±0.34b
HN-9 7.11±0.91b 8.83±0.80b 8.96±0.81b
NX-18 10.14±0.74a 11.98±0.80a 10.70±0.53a

Fig.2

Electrophoresis of PCR products amplified from antagonistic bacteria 16S rRNA and internal transcribed spacer (a): Amplification of 16S rRNA, M represents λ-Eco I T-14 digest marker; (b): Amplification of internal transcribed spacer between 16S and 23S rRNA, M represents 1 kb plus DNA Ladder; 1-6 represent XC-1, XC-2, FC-11, FC-17, HN-9 and NX-18, respectively."

Fig.3

Colony morphology of antagonistic bacteria Strains were incubated at 30 ℃ for 48 h after streaking."

Fig.4

Determination of antibacterial substances of antagonistic bacteria (a) protease; (b) siderophore; (c) biofilm.“+”: Bacillus pumilus SCU11,“-”: Escherichia coli MG1655, CK: blank control."

Fig.5

Effects of FC-17 on the suppression of potato bacterial wilt (a) and (b) were Longshu 7 and Atlantic, respectively, pictures were taken at 45 days after seeding, and the enlargement of infected leaf is shown on the right of the picture."

Table 3

Statistics for the suppression of FC-17 on potato bacterial wilt in pots"

马铃薯品种
Potato cultivar
处理
Treatment
病情指数
Disease index
防治效果
Control effect (%)
陇薯7号
Longshu 7
R 45.37±18.49
FR 9.52±16.49* 79.46
F
CK
大西洋
Atlantic
R 52.68±16.04
FR 15.18±15.64* 70.83
F
CK
[1] Hayward A C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology, 1991, 29(1):65-87.
doi: 10.1146/phyto.1991.29.issue-1
[2] Coll N S, Valls M. Current knowledge on the Ralstonia solanacearum type III secretion system. Microbial Biotechnology, 2013, 6(6):614-620.
doi: 10.1111/mbt.2013.6.issue-6
[3] 华静月, 张长龄, 何礼远. 我国马铃薯青枯菌菌系的初步研究. 植物病理学报, 1985, 15(3):181-184.
[4] Xavier A D, de Almeida J C F, de Melo A G, et al. Characterization of CRISPR-Cas systems in the Ralstonia solanacearum species complex. Molecular Plant Pathology, 2019, 20(2):223-239.
doi: 10.1111/mpp.12750 pmid: 30251378
[5] 陈永芳, 何礼远, 徐进. 马铃薯青枯病的PCR检测. 植物保护学报, 2005, 32(2):129-132.
[6] 李广存, 李成彤. 马铃薯青枯病菌的PE-ELISA检测. 中国马铃薯, 2002(1):18-20.
[7] 邵凤成, 兰洪侠, 张雪梅, 等. 辣椒青枯病的发生与防治. 中国农技推广, 2001(2):43.
[8] 赵从新, 郑宇峰, 王顺党. 番茄青枯病的发生与防治. 云南农业科技, 2009(增2):96-97.
[9] 黄明媛, 顾文杰, 张发宝, 等. 番茄青枯病拮抗菌筛选鉴定及其发酵条件初探. 微生物学通报, 2011, 38(2):214-220.
[10] Philippot L, Raaijmakers J M, Lemanceau P, et al. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11(11):789-799.
doi: 10.1038/nrmicro3109 pmid: 24056930
[11] Bender S F, Wagg C, van der Heijden M G A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution, 2016, 31(6):440-452.
doi: 10.1016/j.tree.2016.02.016
[12] Bakker P, Pieterse C, Jonge R D, et al. The soil-borne legacy. Cell, 2018, 172(6):1178-1180.
doi: S0092-8674(18)30168-5 pmid: 29522740
[13] Barrios E. Soil biota, ecosystem services and land productivity. Ecological Economics, 2007, 64(2):269-285.
doi: 10.1016/j.ecolecon.2007.03.004
[14] 曾庆伟, 温心怡, 吴小芹. 1株Pseudomonas frederiksbergensis JW-SD2的解磷特性及解磷条件研究. 微生物学杂志, 2016, 36(1):11-16.
[15] Lu Z Z, Peng L J, Ding H X. Screening and identifying of Antagonistic actinomycetes against Ralstonia solancearum. Chinese Tobacco Chinese, 2013, 34(2):54-58.
[16] 熊仕俊, 孙成龙, 施闯, 等. 番茄青枯病菌拮抗放线菌的筛选及鉴定. 北方园艺, 2014, 38(5):114-117.
[17] Ran L X, Liu C Y, Wu G J, et al. Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biological Control, 2005, 32(1):111-120.
doi: 10.1016/j.biocontrol.2004.08.007
[18] 雷娟, 段静波, 马寒, 等. 一株抗青枯假单胞菌放线菌的筛选、鉴定及发酵条件优化. 应用与环境生物学报, 2010, 16(1):79-83.
[19] Hu J, Wei Z, Friman V P, et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. MBIO, 2016, 7(6):e01790.
[20] Wei Z, Yang X M, Yin S X, et al. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Applied Soil Ecology, 2011, 48(2):152-159.
doi: 10.1016/j.apsoil.2011.03.013
[21] 王迪, 申红妙, 冉隆贤. 内生枯草芽孢杆菌CN181防治桉树青枯病及促生作用研究. 河北林果研究, 2015, 30(4):331-334.
[22] 乔俊卿, 陈志谊, 梁雪杰, 等. 枯草芽孢杆菌Bs916在番茄根部的定殖. 江苏农业学报, 2015, 31(6):1278-1283.
[23] Wang X F, Wei Z, Li M, et al. Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs. Evolution, 2017, 71(3):733-746.
doi: 10.1111/evo.13143 pmid: 27925169
[24] 邱清华, 姬广海, 魏兰芳, 等. 马铃薯青枯病拮抗菌株的筛选. 云南农业大学学报, 2002, 17(3):228-231.
[25] Kheirandish Z, Harighi B. Evaluation of bacterial antagonists of Ralstonia solanacearum,causal agent of bacterial wilt of potato. Biological Control, 2015, 86(7):14-19.
doi: 10.1016/j.biocontrol.2015.03.007
[26] 熊汉琴. 番茄青枯病拮抗菌的筛选及其生防机制研究. 广州: 华南农业大学, 2016.
[27] Zhou T T, Chen D, Li C Y, et al. Isolation and characterization of Pseudomonas brassicacearum J 12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiological Research, 2012, 167(7):388-394.
doi: 10.1016/j.micres.2012.01.003
[28] Tans-Kersten J, Brown D, Allen C. Swimming motility, a virulence trait of Ralstonia solanacearum,is regulated by FlhDC and the plant host environment. Molecular Plant-Microbe Interactions, 2004, 17(6):686-695.
doi: 10.1094/MPMI.2004.17.6.686 pmid: 15195951
[29] Guo J H, Qi H Y, Guo Y H, et al. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control, 2004, 29(1):66-72.
doi: 10.1016/S1049-9644(03)00124-5
[30] 金术超, 杜春梅, 平文祥, 等. 解磷微生物的研究进展. 微生物学杂志, 2006, 26(2):73-78.
[31] Selvakumar G, Mohan M, Kundu S, et al. Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Letters in Applied Microbiology, 2008, 46(2):171-175.
pmid: 18028329
[32] Ahemad M, Khan M S. Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere, 2012, 86(9):945-950.
doi: 10.1016/j.chemosphere.2011.11.013
[33] Pieterse C M J, de Jonge R, Berendsen R L. The soil-borne supremacy. Trends in Plant Science, 2016, 21(3):171-173.
doi: S1360-1385(16)00034-0 pmid: 26853594
[34] Weller D M. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology, 2007, 97(2):250-256.
doi: 10.1094/PHYTO-97-2-0250 pmid: 18944383
[35] O'sullivan D J, O'Gara F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiological Reviews, 1992, 56(4):662-676.
doi: 10.1128/mr.56.4.662-676.1992
[36] Anuratha C S, Gnanamanickam S S. Biological control of bacterial wilt caused by Pseudomonas solanacearum in India with antagonistic bacteria. Plant and Soil, 1990, 124(1):109-116.
doi: 10.1007/BF00010938
[37] Ramesh R, Phadke G S. Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Protection, 2012, 37(7):35-41.
doi: 10.1016/j.cropro.2012.02.008
[38] 魏春妹, 张春明, 陶树玉, 等. 番茄青枯病生防制剂的研制与应用(综述). 上海农业学报, 2000, 16(4):69-72.
[39] 徐进, 何礼远, 冯洁, 等. 生防细菌对马铃薯青枯病的防病增产作用研究. 植物保护, 2003, 29(5):40-42.
[40] 丁传雨. 生物有机肥对土传马铃薯青枯病的防控技术及机理研究. 南京: 南京农业大学, 2012.
[41] 郑新艳. 马铃薯土传青枯病拮抗菌的筛选鉴定及其生态效应. 南京: 南京农业大学, 2012.
[1] Shao Yang, Guo Yanping, Min Gengmei, Yang Xiaoming. Effects of Different Functional Herbicides on the Growth of Broad Bean and Field Weeds [J]. Crops, 2023, 39(3): 254-259.
[2] Yu Julong, Zhang Guo, Zhao Laicheng, Yao Kebing, Luo Guanghua, Fang Jichao, Zhang Jianhua, Jiao Yang, Shu Zhaolin. Control Effects of Different Seed Treatments on the Rice Leaf Folder under Machine-Planting Condition [J]. Crops, 2021, 37(6): 224-229.
[3] Ren Meifeng,Dong Jinming,Li Daqi,Zhang Meng,Yang Jing,Lu Junjiao. Control Effects of Different Types of Seed-Coating on the Root Rot Disease of Red Kidney Beans [J]. Crops, 2019, 35(5): 200-204.
[4] Shaoguang Liu,Xiatong Zhao,Xi’e Song,Xiangyang Yuan,Shuqi Dong,Meijun Guo,Pingyi Guo. Effects of Intermembrane Spraying Pre-Germination Herbicide on the Safety of Millet and Weed Control [J]. Crops, 2019, 35(2): 173-178.
[5] Li Chunhong,Lu Xianglong,Zhang Peitong,Su Yanjing,Wang Yiming,Guo Wenqi,Yin Jianmei,Han Xiaoyong,Wang Li,Huo Enjie. Screening Herbicides to Control Weeds for Sweet Sorghum [J]. Crops, 2018, 34(6): 158-161.
[6] Zhang Jianhua,Guo Ruifeng,Cao Changlin,Fan Na,Jiang Baiyang,Li Guang,Shi Lijuan,Peng Zhidong,Bai Wenbin. Study on Effect and Safety of Controlling Weed in Sorghum Field by Several Stem and Leaf Treatment Herbicide [J]. Crops, 2018, 34(5): 162-166.
[7] Xuejiao Zhang,Jingjing Shi,Na Chang,Yaqin Zhang,Yongzhi Qi,Wenchao Zhen,Baozhong Yin. Isolation and Identification of Antagonistic Bacteria of Fusarium Head Blight of Winter Wheat in Hebei Province [J]. Crops, 2017, 33(2): 157-162.
[8] Zhihua Li,Xiaolan Jing,Huixia Li,Gang Tian,Xin Liu,Tingting Mu. Safety and Weed Control Efficiency of Foxtail Millet Seedling Stage Herbicides [J]. Crops, 2017, 33(1): 150-154.
[9] Chao Jiang,Jianjun Yin,Xiujian Guo. Control Effect of Six Kinds of Herbicides on Field Weed in Panicum miliaceum L. [J]. Crops, 2016, 32(5): 167-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!