Crops ›› 2025, Vol. 41 ›› Issue (3): 102-107.doi: 10.16035/j.issn.1001-7283.2025.03.014

Previous Articles     Next Articles

Effects of Heat Acclimation on Physiological and Biochemical Characteristics of Erigeron breviscapus under High Temperature Stress

Xu Honggao1(), Xu Ping1(), Luo Wenxiu1, Lu You1, Tu Zhenhua1, Zhang Xuan1, Chen Yichun1, Zheng Guowei1(), Yang Yingcui2, Chen Jia3()   

  1. 1College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan, China
    2Nujiang Runfeng Agricultural Science and Technology Service Co., Ltd., Nujiang 673500, Yunnan, China
    3College of Ethnic Medicines, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan, China
  • Received:2024-03-30 Revised:2024-07-03 Online:2025-06-15 Published:2025-06-03

Abstract:

To study whether the heat acclimated Erigeron breviscapus has improved its ability to resist high temperature stress and its corresponding physiological response, E.breviscapus was used as the test material. The experimental group (T) consisted of E.breviscapus that had been heat-treated at (36.0±0.5) ℃ for one day, while the control group (CK) was comprised of plants grown under normal conditions at 22℃. Physiological and biochemical indexes were compared before and after four hours of stress at (48.0± 0.5) ℃, as well as after three hours of recovery at (36.0±0.5) ℃. The injury index after four hours of stress was also evaluated. The results showed that the relative conductivity and malondialdehyde content of T treated E. breviscapus decreased and the relative water content increased after three hours recovery at (36.0±0.5) °C after high temperature stress, while the recovery of CK group had no significant change compared with that of high temperature stress, and lost the recovery ability. At the same time, the contents of photosynthetic pigment (chlorophyll) and osmoregulatory substances such as proline, soluble sugar and soluble protein in T group were higher than those in CK group during high temperature stress. The above results indicated that heat acclimation treatment could alleviate the damage of high temperature on E.breviscapus and improve its resistance to high temperature stress.

Key words: Erigeron breviscapus (Vant.) H.-Mazz, Heat acclimation, High temperature stress, Physiological and biochemical characteristics

Table 1

Statistics of damage caused by high temperature stress in E.breviscapus"

处理
Treatment
热害指数级别株数
Number of plants of thermal
damage index grade
总株数
Total
number
of plants
热害指数
Thermal
damage
index
0 1 2 3 4 5
CK 0 0 2 4 5 16 27 0.8592
T 8 8 4 2 2 3 27 0.3333

Fig.1

Phenotype of E.breviscapus in each treatment stage (a) before heat stress; (b) after heat stress; (c) after recovery."

Fig.2

Changes in RWC and REC of E.breviscapus leaves after high temperature stress Different lowercase letters indicate significant differences (P < 0.05), the same below."

Fig.3

Changes in chlorophyll and carotene contents of E.breviscapus after high temperature stress"

Fig.4

Changes of osmotic adjustment substances in E.breviscapus after high temperature stress"

[1] 中华人民共和国国家药典委员会. 中国药典(一部). 北京: 中国医药科技出版社, 2020.
[2] 向成钢, 李河, 魏翔, 等. 药用植物灯盏花MYC转录因子家族生物信息学及表达模式分析. 分子植物育种,[2024-03-30]. https://kns.cnki.net/kcms2/detail/46.1068.S.20230704.1056.003.html.
[3] 苏灿, 普元柱, 高勇, 等. 云南省灯盏花产业发展现状及对策. 中药材, 2023, 46(5):1067-1074.
[4] 刘毅, 耿洪娇, 崔鑫, 等. 注射用灯盏花素治疗急性脑梗死和冠心病心绞痛的临床综合评价. 中草药, 2023, 54(19):6413-6423.
[5] Khan S, Anwar S, Ashraf M Y, et al. Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants (Basel), 2019, 8(11):508.
[6] 周天军, 陈晓龙, 张文霞, 等. 气候变化与碳中和. 自然杂志, 2024, 46(1):1-11.
[7] 罗文秀, 米琪, 陆尤, 等. 温度升高对灯盏花光合生理特性的影响. 北方园艺, 2023(22):108-115.
[8] 梁雯, 赵冰, 黄文梅. 热锻炼对杜鹃花耐热性的影响. 浙江农林大学学报, 2018, 35(2):284-290.
[9] 付峰, 隋正红, 李秉钧, 等. 热锻炼对龙须菜高温胁迫响应的影响. 海洋科学, 2017, 41(4):10-16.
[10] Wos G, Willi Y. Thermal acclimation in Arabidopsis lyrata: genotypic costs and transcriptional changes. Journal of Evolutionary Biology, 2018, 31(1):123-135.
doi: 10.1111/jeb.13208 pmid: 29134788
[11] 侯赵玉, 龚亦钊, 钱祎, 等. 芍药耐热性评价及其鉴定指标筛选. 中国农业科学, 2023, 56(23):4742-4756.
doi: 10.3864/j.issn.0578-1752.2023.23.015
[12] 周余华, 梁宇翔. 高温胁迫对多花梾木幼苗叶片生理因子的影响. 江苏农业科学, 2021, 49(11):85-92.
[13] 户金鸽, 白世践, 陈光. 不同葡萄砧木叶绿素荧光参数对高温的响应. 北方园艺, 2021(13):36-42.
[14] 罗文秀, 米琪, 李文春, 等. 滇黄精对长期CO2浓度升高的响应. 分子植物育种,[2024-03-30]. http://kns.cnki.net/kcms/detail/46.1068.S.20230810.0926.002.html.
[15] 张开明, 陈敏, 田耕, 等. 5种观赏秋菊耐热性差异的生理机制分析. 内蒙古农业大学学报(自然科学版), 2022, 43(2):6-10.
[16] 陈蕾太, 孙爱清, 杨敏, 等. 逆境条件下小麦种子活力与种子萌发相关酶活性及其基因表达的关系. 应用生态学报, 2017, 28(2):609-619.
[17] 江建成, 廖菊阳, 曹受金, 等. 高温胁迫对三种杜鹃生长及生理的影响. 北方园艺, 2023(18):54-62.
[18] 陆艾鲜, 凌瑞, 陈生煜, 等. 高温胁迫下8个绣球品种的生理生化响应. 热带作物学报, 2022, 43(4):816-828.
doi: 10.3969/j.issn.1000-2561.2022.04.018
[19] 李小玲, 华智锐, 张飞, 等. 不同高山杜鹃品种耐热性评价研究. 江西农业学报, 2022, 34(2):82-86.
[20] 邱佳奇, 张立业, 卢凯政, 等. 不同红树莓品种对自然高温的生理响应及耐热性综合评价. 安徽农业科学, 2022, 50(16):82-86.
[21] 刘柳, 赵梦雨, 刘曙光, 等. 高温胁迫下月季叶片含水量变化与电阻抗参数关系的研究. 现代园艺, 2020, 43(11):6-8.
[22] 江定, 李光光, 黄剑锋, 等. 苦瓜苗期对高温胁迫的生理响应及耐热性初步评价. 广东农业科学, 2023, 50(9):155-164.
[23] 张秀梅, 许建新, 何新杰, 等. 高温胁迫对洋竹草生长及部分生理指标的影响. 江西农业学报, 2019, 31(6):40-44.
[24] 张瑜, 严琳玲, 王文强, 等. 大叶千斤拔对高温胁迫的生理响应及耐热性分析. 热带作物学报, 2016, 37(7):1290-1297.
[25] 余梦奇, 路梦莉, 张雅婷, 等. 灌浆期高温对玉米叶片光合特性及抗氧化酶活性的影响. 中国农业气象, 2023, 44(7):599-610.
[26] 张婷, 李平, 韦嘉励. 4种常春藤对高温胁迫的生理响应. 分子植物育种,[2024-03-30]. http://kns.cnki.net/kcms/detail/46.1068.S.20231027.0926.002.html.
[27] 于金平, 俞珊, 梁有旺, 等. NaCl胁迫对美国白蜡幼苗部分生理指标的影响. 植物资源与环境学报, 2014, 23(1):110-112.
[28] 王冠玉, 贾平平, 靳娟, 等. 高温胁迫对枣花器官生理特性的影响. 新疆农业科学, 2023, 60(6):1485-1491.
doi: 10.6048/j.issn.1001-4330.2023.06.022
[29] 吕校石, 徐建峰, 许建新, 等. 深圳市耐高温月季品种筛选研究. 农业技术与装备, 2022(10):128-130.
[30] 刘辉, 骆慧枫, 张琛, 等. 甜樱桃对高温胁迫的生理响应. 生态学报, 2023, 43(2):702-708.
[31] 蔡溧聪. 油菜素内酯与热驯化对茭白幼苗高温抗性的调控作用. 杭州:浙江大学, 2022.
[32] 傅志强, 张恒, 刘祯, 等. 不同油茶品种苗对高温胁迫的生理响应及耐热性评价. 林业科学研究, 2024, 37(2):189-200.
[33] 黄淦, 李美婷, 赵艳莉, 等. 不同切花菊品种的高温生理响应及耐热性综合评价. 华南师范大学学报(自然科学版), 2024, 56(1):92-103.
[34] 郭卫珍, 宋垚, 章丹峰, 等. 9个山茶品种对高温胁迫的光合生理响应及其耐热性综合评价. 西北植物学报, 2024, 44(4):539-550.
[1] Xie Keran, Gao Ti, Cui Kehui. Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature [J]. Crops, 2024, 40(1): 8-15.
[2] Lu Jun, Qian Yu, Yang Liu, Wang Yong, Chen Yulan. Effects of Storage Time on Seed Germination and Physiological Characteristics of Tobacco Variety Honghuadajinyuan [J]. Crops, 2022, 38(2): 211-214.
[3] Zhang Xuepeng, Li Teng, Wang Biao, Liu Qing, Liu Hanyu, Tao Zhiqiang, Sui Peng. Study on High Temperature Stress Threshold of Maize Leaves [J]. Crops, 2021, 37(2): 62-70.
[4] Wu Weihua, Liu Jiayou, Yuan Liuzheng, Yan Haixia, Fu Jiafeng, Wang Huiqiang, Wang Rui, Li Teng, Liu Kang. Effects of High Temperature Stress at Booting Stage on Maize Hybrids [J]. Crops, 2020, 36(5): 59-64.
[5] Wang Hezheng,Shen Sihan,Zhang Dongxia,Wang Gaijing,Zheng Jinzhi,Bi Biao,Wang Wenjie. Effects of Salicylic Acid on Physiological and Biochemical Characteristics of Wheat Seedling under Water Stress [J]. Crops, 2020, 36(2): 168-171.
[6] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize [J]. Crops, 2019, 35(3): 118-125.
[7] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L. [J]. Crops, 2019, 35(3): 185-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!