Crops ›› 2021, Vol. 37 ›› Issue (3): 57-64.doi: 10.16035/j.issn.1001-7283.2021.03.009

Previous Articles     Next Articles

Effects of Tillage Methods on Soil Microbial Community Diversity in Oat Fields

Wang Lifang(), Zhang Dejian(), Zhang Tingting   

  1. School of Life Sciences, Inner Mongolia University/Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, Hohhot 010070, Inner Mongolia, China
  • Received:2020-07-08 Revised:2020-12-31 Online:2021-06-15 Published:2021-06-22
  • Contact: Zhang Dejian E-mail:1393238495@qq.com;zhangdejian00@163.com

Abstract:

In order to explore the effects of different tillage methods on soil microbial community diversity in oat fields, to enrich the species and quantity of soil microorganisms, mechanical no-tillage and traditional tillage were used to take soil samples of 0-20cm at the jointing stage and filling stage of oat, respectively. 16S rRNA sequencing techniques and ITS sequencing techniques were used to sequence soil bacteria and fungi, respectively, and then analyzed the diversity and difference of microbial community. The results showed that the variety and abundance of soil microorganisms were higher in no-tillage treatment compared with traditional tillage treatment. Dominance abundance analysis had shown that the dominant fungi were Ascomycota and Basidiomycota, and the dominant bacteria were Actinomycetes, Proteobacteria, and Acidobacteria. Therefore, compared with traditional tillage, no-tillage treatment could improve soil microbial diversity and provide a theoretical basis for the selection of oat field tillage method.

Key words: Tillage methods, Oat field, Soil microorganisms, Diversity

Table 1

Soil fungal sequences number"

处理
Treatment
有效序列
Valid
sequence
优质序列
Quality
sequence
比例
Percentage
(%)
翻耕拔节期
Plowing jointing period (FGB)
18 641 14 640 78.54
免耕拔节期
No tillage jointing period (MGB)
32 344 28 098 86.87
翻耕灌浆期
Plowing grouting period (YGF)
15 904 12 098 76.07
免耕灌浆期
No tillage grouting period (YGM)
15 995 11 996 75.00

Table 2

Number of bacterial sequences in soil samples during oat grouting period"

处理
Treatment
有效序列
Valid sequence
优质序列
Quality sequence
比例
Percentage (%)
YGF 174 498 124 558 71.38
YGM 174 593 133 746 76.60

Fig.1

OTU clustering diagram of soil fungi (left) and bacterium (right) in oat field under different tillage methods"

Fig.2

Distribution curve of soil fungi and bacteria abundance in oat fields under different tillage methods"

Table 3

Soil microbial diversity indexes of oat under different tillage methods and different growth stages"

类别
Sort
处理
Treatment
丰富度指数
Abundant index
多样性指数
Diversity index
ace chao simpson shannon
真菌 FGB 1343.8190 1022.2000 0.0542 3.9244
Fungus MGB 814.1254 826.0374 0.0254 4.6401
YGF 865.4583 680.9421 0.0671 3.5796
YGM 767.2573 790.4694 0.1053 3.4812
细菌 FGB 5811.2160 5859.6097 0.0032 6.9241
Bacteria MGB 5913.9673 5961.5290 0.0030 6.9325
YGF 5870.0840 5927.9570 0.0037 6.8661
YGM 5980.8010 6057.8190 0.0034 6.8962

Fig.3

Effects of different tillage methods on the distribution of oat soil fungi and bacterium"

Table 4

Effects of different tillage methods on the fungi and bacteria abundance of oat soil %"

类别Sort 平均值Mean YGM YGF MGB FGB
真菌Fungus 0.0 0.0 0.0 0.0 0.0
0.3 0.0 0.6 0.6 0.0
64.3 59.5 58.2 56.0 83.6
2.4 1.2 1.2 5.7 1.7
1.0 0.0 0.1 3.9 0.0
0.1 0.0 0.1 0.1 0.0
0.0 0.0 0.0 0.0 0.0
1.2 0.0 0.0 4.7 0.0
30.7 39.2 39.8 28.9 14.7
细菌Bacteria 0.0 0.0 0.0 0.0 0.0
12.3 14.4 11.2 10.8 12.9
37.3 33.9 38.6 39.2 37.3
0.3 0.3 0.3 0.5 0.2
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
3.8 4.3 3.5 3.1 4.3
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.1 0.0
0.0 0.0 0.0 0.0 0.0
0.1 0.1 0.1 0.3 0.1
0.1 0.2 0.1 0.0 0.1
0.0 0.0 0.0 0.0 0.0
0.1 0.1 0.1 0.1 0.1
6.3 6.8 5.6 6.9 5.8
0.1 0.1 0.1 0.0 0.1
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.5 0.6 0.5 0.8 0.3
4.2 4.6 4.5 3.4 4.2
0.0 0.1 0.1 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.6 0.8 0.6 0.3 0.6
5.7 5.4 6.4 5.8 5.0
23.5 24.2 23.2 23.2 23.4
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
4.9 4.0 5.2 5.3 5.1
0.0 0.0 0.0 0.0 0.0

Fig.4

PCA of fungi and bacterium"

Fig.5

Cluster analysis of fungi and bacterium under different treatments"

Fig.6

Community structure of fungi (left) and bacterium (right) in oat fields under different treatments"

[1] 马琳 . 土壤微生物多样性影响因素及研究方法综述. 乡村科技, 2019(33):112-113.
[2] 张记霞 . 土壤微生物多样性及其影响因素. 农民致富之友, 2015(24):137,231.
[3] 赵轻舟, 王艳芬, 崔骁勇 , 等. 草地土壤微生物多样性影响因素研究进展. 生态科学, 2018,37(3):204-212.
[4] 芦伟龙 . 耕作方式与秸秆还田量对植烟土壤理化性质及烤烟生长的影响. 北京: 中国农业科学院, 2019.
[5] 吴建富, 曾研华, 赵新帆 , 等. 耕作方式对双季机插水稻产量和土壤理化性质的影响. 湖南农业大学学报(自然科学版), 2017,43(6):581-585.
[6] 李彤, 王梓廷, 刘露 , 等. 保护性耕作对西北旱区土壤微生物空间分布及土壤理化性质的影响. 中国农业科学, 2017,50(5):859-870.
[7] 李利平, 郭宏伟, 马少荣 . 不同保护性耕作方式对土壤理化性质的影响. 现代农业, 2016(3):26-28.
[8] 曹宏杰, 倪红伟 . 土壤微生物多样性及其影响因素研究进展. 国土与自然资源研究, 2015(3):85-88.
[9] 李艳玲 . 根际微生物群落对挥发性有机物和作物生长的影响. 北京: 中国农业科学院, 2019.
[10] 康林玉, 刘周斌, 欧立军 , 等. 土壤微生物促进作物生长发育研究进展. 湖南农业科学, 2017(3):113-116.
[11] Topalović O, Bredenbruch S, Schleker A S S , et al. Microbes attaching to endoparasitic phytonematodes in soil trigger plant defense upon root penetration by the nematode. Frontiers in Plant Science, 2020,11(11):138-142.
doi: 10.3389/fpls.2020.00138
[12] 卢玉秋 . 微生物群落对作物生长及植物激素的影响. 北京: 中国农业科学院, 2019.
[13] 张敏 . 改变微生物群落对油菜和玉米生长的影响. 北京: 中国农业科学院, 2016.
[14] Kladivko E J . Tillage systems and soil ecology. Soil and Tillage Research, 2001,61(1/2):61-76.
doi: 10.1016/S0167-1987(01)00179-9
[15] Spedding T A, Hamel C, Mehuys G R , et al. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biology and Biochemistry, 2004,36(3):499-512.
doi: 10.1016/j.soilbio.2003.10.026
[16] 李景, 吴会军, 武雪萍 , 等. 长期不同耕作措施对土壤团聚体特征及微生物多样性的影响. 应用生态学报, 2014,25(8):2341-2348.
[17] Carpenter-Boggs L, Stahl P D, Lindstrom M J , et al. Soil microbial properties under permanent grass,conventional tillage,and no-till management in South Dakota. Soil and Tillage Research, 2003,71(1):15-23.
doi: 10.1016/S0167-1987(02)00158-7
[18] 钟文辉, 蔡祖聪 . 土壤管理措施及环境因素对土壤微生物多样性影响研究进展. 生物多样性, 2004,12(4):456-465.
doi: 10.17520/biods.2004056
[19] Meriles J M, Vargas Gil S, Conforto C , et al. Soil microbial communities under different soybean cropping systems:Characterization of microbial population dynamics,soil microbial activity,microbial biomass,and fatty acid profiles. Soil and Tillage Research, 2009,103(2):271-281.
doi: 10.1016/j.still.2008.10.008
[20] Drijber R A, Doran J W, Parkhurst A M , et al. Changes in soil microbial community structure with tillage under long-term wheat-fallow management soil. Soil Biology and Biochemistry, 2000,32(10):1419-1430.
doi: 10.1016/S0038-0717(00)00060-2
[21] Joseph, Edwards, Cameron , et al. Structure,variation,and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(8):11-20.
[22] 周晨, 张绍武, 陈伟 . 微生物分类单元聚类算法比较研究. 北京生物医学工程, 2014,33(6):591-597.
[23] Avolio M L, Carroll I T, Collins S L , et al. A comprehensive approach to analyzing community dynamics using rank abundance curves. Ecosphere, 2019,10(10):1-18.
[24] Hagerty S L, Hutchison K E, Lowry C A , et al. An empirically derived method for measuring human gut microbiome alpha diversity:Demonstrated utility in predicting health-related outcomes among a human clinical sample. PLoS ONE, 2020,15(3):204-229.
[25] Sándor B, Roberto C, Stefano C , et al. Unimodal relationships of understory alpha and beta diversity along chronosequence in coppiced and unmanaged beech forests. Diversity, 2020,12(3):101-119.
doi: 10.3390/d12030101
[26] Tsuyuzaki K, Sato H, Sato K , et al. Benchmarking principal component analysis for large-scale single-cell RNA-sequencing. Genome Biology, 2020,21(1):9-21.
doi: 10.1186/s13059-019-1900-3 pmid: 31955711
[27] 吕成龙, 田雨, 陈芳慧 , 等. 采用16S rRNA高通量测序技术分析鲜奶中微生物的多样性. 南京农业大学学报, 2020,43(2):333-338.
[28] Wang Y, Zhao X, Guo Z , et al. Response of soil microbes to a reduction in phosphorus fertilizer in rice-wheat rotation paddy soils with varying soil P levels. Soil and Tillage Research, 2018,181:127-135.
doi: 10.1016/j.still.2018.04.005
[29] 程虎印, 王艳, 赵乐 , 等. 基于高通量测序揭示重楼根际土及不同部位真菌群落差异. 药物分析杂志, 2020,40(3):455-461.
[30] 杨明, 袁悦, 李宪臻 , 等. 不同环境中纤维素降解菌群多样性差异分析. 江西农业大学学报, 2020,42(1):174-186.
[31] 肖琴, 徐炜, 杨淑君 , 等. 保护性耕作对土壤影响的研究进展. 河南农业, 2019(35):41-42.
[32] 卢闯, 张宏媛, 刘娜 , 等. 免耕覆膜增加中度盐碱土团聚体有机碳和微生物多样性. 农业工程学报, 2019,35(21):116-124.
[33] 张建军, 党翼, 赵刚 , 等. 留膜留茬免耕栽培对旱作玉米田土壤养分、微生物数量及酶活性的影响. 草业学报, 2020,29(2):123-133.
[34] 樊晓刚 . 耕作对土壤微生物多样性的影响. 北京: 中国农业科学院, 2010.
[35] 潘孝晨, 唐海明, 肖小平 , 等. 不同土壤耕作方式下稻田土壤微生物多样性研究进展. 中国农学通报, 2019,35(23):51-57.
[36] 赵丽琨 . 不同耕作方式对我国主要玉米种植区土壤真菌种类及数量的影响:中国植物病理学会2016年学术年会论文集. 中国植物病理学会, 2016:554.
[37] 徐佳, 王燕春, 周艳芳 . 不同作物田土壤微生物种类和数量的初步研究. 乡村科技, 2016(2):71-73.
[38] 汪娅婷, 付丽娜, 姬广海 , 等. 基于高通量测序技术研究云南玉米根际微生物群落多样性. 江西农业大学学报, 2019,41(3):491-500.
[39] Jin T, Wang Y, Huang Y , et al. Taxonomic structure and functional association of foxtail millet root microbiome. Gigaence, 2017(10):10.
[40] Kwak M J, Kong H G, Choi K , et al. Author correction:rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology, 2018,36(11):1117.
doi: 10.1038/nbt1118-1117
[1] Zhang Quanfang, Jiang Mingsong, Chen Feng, Zhu Wenyin, Zhou Xuebiao, Yang Lianqun, Xu Jiandi. Analysis of Genetic Diversity of Rice Varieties (Lines) in Shandong Province [J]. Crops, 2021, 37(4): 26-31.
[2] Li Qiong, Chang Shihao, Wu Tingting, Geng Zhen, Yang Qingchun, Shu Wentao, Li Jinhua, Zhang Donghui, Zhang Baoliang. Analysis of Genetic Diversity and Genetic Relationship for 120 Soybean Germplasms [J]. Crops, 2021, 37(4): 51-58.
[3] Jia Ruiling, Zhao Xiaoqin, Nan Ming, Chen Fu, Liu Yanming, Wei Liping, Liu Junxiu, Ma Ning. Genetic Diversity Analysis and Comprehensive Assessment of Agronomic Traits of 64 Tartary Buckwheat Germplasms [J]. Crops, 2021, 37(3): 19-27.
[4] Fan Yegeng, Chen Rongfa, Yan Haifeng, Zhou Huiwen, Weng Mengling, Huang Xing, Luo Ting, Zhou Zhongfeng, Qiu Lihang, Wu Jianming. Effects of Sugarcane Rotation Green Fodder Corn and Peanut on Sugarcane Growth and Soil Properties [J]. Crops, 2021, 37(1): 104-111.
[5] Liu Ying, Li Jie, Zhao Lingxiao, Li Chunxi, Jiang Lina, Zhang Daijing, Ma Jianhui. The Effects of Different Planting Patterns and Straw Returning to Field on Soil Improvement in the Yellow River Course Region [J]. Crops, 2020, 36(6): 109-115.
[6] Yang Wanjun, Pan Xiangyu, Wang Xiuhua, Wang Lu, Zhao Yan. Genetic Diversity Analysis of Yield and Agronomic Traits of 119 Alfalfa Varieties (Lines) [J]. Crops, 2020, 36(6): 17-22.
[7] Gao Jie, Feng Guangcai, Li Xiaorong, Li Qingfeng, Peng Qiu. Phenotypic Diversity and Clustering Analysis of Sorghum Germplasm Resources in Different Regions of Guizhou Province [J]. Crops, 2020, 36(6): 54-60.
[8] Gong Yanlong, Lei Yue, Yan Zhiqiang, Liu Xuewei, Zhang Dashuang, Wu Jianqiang, Zhu Susong. Comprehensive Evaluation of Phenotype Genetic Diversity in Japonica Rice Germplasm Resources in Different Ecological Zones [J]. Crops, 2020, 36(5): 71-79.
[9] Shan Feibiao, Du Ruixia, Wang Yongxing, Yang Qinfang, Liu Chunhui, Chen Yang. Genetic Diversity Analysis of Sunflower (Helianthus annuus L.) Based on DUS Testing [J]. Crops, 2020, 36(4): 107-113.
[10] Qi Bingjie, Wang Min, Zhang Zhiyong, He Xin, Liu Jinghui. Diversity Analysis of Mineral Elements in Oat Germplasm Resources [J]. Crops, 2020, 36(4): 72-78.
[11] Gong Dan, Wang Suhua, Cheng Xuzhen, Wang Lixia. Construction of SSR Fingerprints and Diversity Analysis of a Cowpea Applied Core Collection [J]. Crops, 2020, 36(4): 79-83.
[12] Li Hongqin, Liu Baolong, Zhang Bo, Zhang Huaigang. Analysis of Genetic Diversity and Establishment of Molecular ID of the Wheat Cultivars Registered in Qinghai Using SSR [J]. Crops, 2020, 36(3): 60-65.
[13] Ma Mengli,Wang Tiantao,Lei En,Meng Hengling,Zhang Wei,Zhang Tingting,Lu Bingyue. Genetic Diversity Analysis of Amomum tsao-ko in Jinping Based on Phenotypic Traits and SSR Markers [J]. Crops, 2020, 36(2): 54-59.
[14] Huang Binglin,Wang Mengxue,Jin Xijun,Hu Guohua,Zhang Yuxian. Effects of Different Tillage Treatments on Soil Microorganisms, Enzyme Activities and Nutrients [J]. Crops, 2019, 35(6): 104-113.
[15] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers [J]. Crops, 2019, 35(5): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!