Crops ›› 2021, Vol. 37 ›› Issue (3): 19-27.doi: 10.16035/j.issn.1001-7283.2021.03.003

Previous Articles     Next Articles

Genetic Diversity Analysis and Comprehensive Assessment of Agronomic Traits of 64 Tartary Buckwheat Germplasms

Jia Ruiling(), Zhao Xiaoqin, Nan Ming, Chen Fu, Liu Yanming, Wei Liping, Liu Junxiu, Ma Ning()   

  1. Dingxi Academy of Agriculture Sciences, Dingxi 743000, Gansu, China
  • Received:2020-12-11 Revised:2021-01-25 Online:2021-06-15 Published:2021-06-22
  • Contact: Ma Ning E-mail:jrl101309@163.com;dxmaning@163.com

Abstract:

The Shannon-Wiener’s diversity index, principal component analysis, comprehensive score F-value, and cluster analysis were used to investigate the genetic diversity and comprehensive assessment of tartary buckwheat germplasm resources including 64 accessions through phenotypic analysis of agronomic traits in arid area. The main conclusions were as follows: the genetic diversity index of seed weight per plant was the highest (13.630), and the coefficient of variation of main stem diameter was the highest(30.6%). The principal component analysis transformed 11 traits into six principal components that indicated the accumulation indices of 87.580%. The F-value was significantly correlated with growth period, plant height, number of main stem nodes, 1000-grain weight, and seed weight per plant, so it could be used as an evaluation index of tartary buckwheat germplasm resources. Seven accessions of buckwheat germplasm resources selected based on the comprehensive scores F-value and the results of cluster analysis could be used as excellent breeding parents with different target characters.

Key words: Tartary buckwheat, Germplasm resources, Genetic diversity, Arid area, Comprehensive assessment

Table 1

A total of 64 tartary buckwheat germplasms tested in this study"

编号Number 代号Code name 种质材料Germplasm 编号Number 代号Code name 种质材料Germplasm 编号Number 代号Code name 种质材料Germplasm
K1 ZNQ101 额拉 K23 ZNQ123 细苦荞 K45 ZNQ145 灵丘苦荞
K2 ZNQ102 额乌 K24 ZNQ124 白云苦荞 K46 ZNQ146 灵丘苦荞
K3 ZNQ103 大额楚 K25 ZNQ125 苦荞 K47 ZNQ147 柳林苦荞
K4 ZNQ104 82-8-1 K26 ZNQ126 苦荞 K48 ZNQ148 中阳苦荞
K5 ZNQ105 82-4-6 K27 ZNQ127 苦荞 K49 ZNQ149 五台苦荞
K6 ZNQ106 彭泽苦荞 K28 ZNQ128 苦荞 K50 ZNQ150 汾西苦荞
K7 ZNQ107 九江苦荞 K29 ZNQ129 苦荞 K51 GS09-01 黑绿荞
K8 ZNQ108 长尖咀苦荞 K30 ZNQ130 苦荞 K52 GS09-02 黑苦荞
K9 ZNQ109 黑苦荞 K31 ZNQ131 87-23(F6080) K53 GS09-03 华岭黑苦荞
K10 ZNQ110 苦荞 K32 ZNQ132 87-25(F6224) K54 GS09-04 环县黑苦荞
K11 ZNQ111 苦荞 K33 ZNQ133 87-26(F6245) K55 GS09-05 早熟黑苦荞
K12 ZNQ112 毕节黑苦荞 K34 ZNQ134 87-28(F6286) K56 GS09-06 黑苦荞
K13 ZNQ113 刺荞 K35 ZNQ135 87-29(F6378) K57 GS09-07 黑绿荞
K14 ZNQ114 贡山苦荞 K36 ZNQ136 88-23(IV-708) K58 GS09-08 黑圆荞
K15 ZNQ115 中甸苦荞 K37 ZNQ137 88-27(IV-63) K59 GS09-09 麻苦荞
K16 ZNQ116 营盘苦荞 K38 ZNQ138 88-28(IV-51) K60 GS09-12 尖嘴荞
K17 ZNQ117 马衔苦荞 K39 ZNQ139 88-29(IV-136) K61 GS09-13 绿荞
K18 ZNQ118 长咀苦荞 K40 ZNQ140 88-35(IV-121) K62 GS09-14 小龙爪
K19 ZNQ119 米苦荞 K41 ZNQ141 87-16(F3035) K63 GS09-15 麻荞
K20 ZNQ120 田粒荞 K42 ZNQ142 岭东苦荞 K64 GS09-16 大麻荞
K21 ZNQ121 大苦荞 K43 ZNQ143 灵丘苦荞
K22 ZNQ122 扁籽荞 K44 ZNQ144 灵丘苦荞

Fig.1

Dynamic of monthly mean precipitation and temperature in experiment areas"

Table 2

Genetic diversity of tartary buckwheat quality traits"

性状
Trait
遗传多样性指数
Genetic diversity index
频率分布Frequency distribution
1 2 3 4 5 6 7
粒色Grain color 2.062 0.347 0.078 0.322 0.322 0.333 0.293 0.367
粒形Kernel shape 1.071 0.364 0.367 0.340
株型Plant type 0.990 0.363 0.336 0.290
熟性Maturity 1.026 0.332 0.352 0.342
抗倒性Lodging resistance 1.086 0.367 0.352 0.367
平均值Mean 1.247

Table 3

Genetic diversity of tartary buckwheat quantitative traits"

项目
Item
生育期
Period of
duration (d)
株高
Plant
height (cm)
主茎粗
Diameter of
main stem (cm)
主茎节数
Node number of main stem
主茎分枝数
Branch number of main stem
千粒重
1000-grain
weight (g)
单株粒重
Seed weight
per plant (g)
单株粒数
Seeds number
per plant
最大值Maximum 129.0 180.9 1.05 27.9 8.4 24.8 9.5 468.0
最小值Minimum 96.0 90.8 0.30 9.6 4.0 13.1 2.6 120.9
平均值Mean 116.9 133.8 0.58 20.2 6.4 20.4 4.7 235.1
标准偏差SD 11.06 18.22 0.18 5.57 1.11 2.51 1.18 60.53
极差Range 33.0 90.1 0.8 18.3 4.4 11.7 6.9 347.1
显著性Sig. * * ** ** * * ** **
变异系数CV (%) 9.5 13.6 30.6 27.6 17.2 12.3 24.9 25.7
遗传多样性指数
Genetic diversity index
2.807 4.072 3.685 3.739 3.424 3.155 13.630 4.094

Table 4

Correlative coefficient in mainly phenotypic traits of tartary buckwheat"

性状
Trait
生育期
Period of
duration
株高
Plant
height
主茎粗
Diameter of main stem
主茎节数
Node number
of main stem
主茎分枝数
Branch number
of main stem
千粒重
1000-grain
weight
单株粒重
Seeds weight
per plant
单株粒数
Seeds number per plant
粒形
Kernel shape
株型
Plant
type
株高Plant height 0.880**
主茎粗
Diameter of main stem
-0.168 0.0180
主茎节数
Node number of main stem
0.546** 0.536** -0.051
主茎分枝数
Branch number of main stem
0.024 0.190 0.012 0.109
千粒重
1000-grain weight
0.760** 0.416** -0.140 0.682** -0.061
单株粒重
Seed weight per plant
0.206 0.051 0.040 0.193 0.130 0.232*
单株粒数
Seeds number per plant
-0.205 -0.153 0.117 -0.175 0.187 -0.310** 0.842**
粒形Kernel shape 0.052 0.070 0.078 0.043 -0.019 0.025 -0.049 -0.025
株型Plant type 0.059 0.167 -0.169 -0.066 -0.031 -0.016 -0.186 -0.173 -0.338**
抗倒性
Lodging resistance
0.133 -0.294** -0.095 0.037 -0.073 0.190 0.110 0.023 0.048 -0.147

Table 5

Principal component analysis in 11 agronomic traits of 64 tartary buckwheat germplasms"

性状Trait 主成分因子Principal component factors
1 2 3 4 5 6
生育期Period of duration 0.947 0.039 -0.079 -0.083 -0.008 -0.031
株高Plant height 0. 911 -0.047 0.525 0.248 -0.059 -0.024
主茎粗Diameter of main stem -0.115 0.188 0.299 0.582 -0.503 0.485
主茎节数Node number of stem 0. 678 0.091 0.001 0.044 0.018 0.032
主茎分枝数Branch number of stem 0.078 0.288 0.431 0.047 0.758 0.365
千粒重1000-grain weight 0.860 0.004 -0.225 -0.088 -0.105 0.025
单株粒重Seed weight per plant 0.179 0.916 0.048 -0.249 -0.156 -0.142
单株粒数Seeds number per plant -0.281 0.900 0.167 -0.173 -0.066 -0.145
粒形Kernel shape 0.064 0.099 -0.317 0.705 0.234 -0.381
株型Plant type 0.047 -0.434 0.434 -0.551 -0.102 -0.030
抗倒性Lodging resistance 0.067 0.173 -0.732 -0.209 0.045 0.496
特征值Numerical value 3.066 2.006 1.461 1.356 0.939 0.805
贡献率Contribution rate (%) 27.874 18.240 13.286 12.325 8.535 7.320
累计贡献率Total account (%) 27.874 46.114 59.400 71.725 80.260 87.580

Fig.2

3-D conformation of tartary buckwheat according to six principal component factors"

Table 6

Comprehensive scores of 20 tartary buckwheat germplasm resources"

编号
Number
代号
Code name
主成分Principal component factor F
F-value
1 2 3 4 5 6
K25 ZNQ125 2.21 1.63 0.016 -0.029 -1.816 -1.816 0.7131
K33 ZNQ133 2.13 1.81 0.018 -0.077 -1.923 -1.923 0.6994
K2 ZNQ102 2.27 1.81 0.018 -0.011 -2.264 -2.264 0.6911
K10 ZNQ110 2.13 1.42 0.014 0.021 -1.661 -1.661 0.6776
K35 ZNQ135 2.07 1.95 0.019 -0.112 -2.071 -2.071 0.6757
K34 ZNQ134 1.95 2.46 0.025 -0.204 -2.419 -2.419 0.6711
K37 ZNQ137 2.23 1.13 0.011 0.023 -1.563 -1.563 0.6684
K48 ZNQ148 2.02 2.26 0.023 -0.113 -2.395 -2.395 0.6663
K13 ZNQ113 2.25 1.30 0.013 0.061 -1.831 -1.831 0.6641
K24 ZNQ124 2.04 1.71 0.017 -0.076 -1.841 -1.841 0.6624
K19 ZNQ119 2.04 2.17 0.022 -0.126 -2.356 -2.356 0.6600
K21 ZNQ121 1.98 2.06 0.021 -0.146 -2.114 -2.114 0.6598
K32 ZNQ132 1.99 1.95 0.020 -0.112 -2.075 -2.075 0.6527
K4 ZNQ104 2.12 1.44 0.014 0.021 -1.848 -1.848 0.6471
K43 ZNQ143 1.91 1.86 0.019 -0.089 -1.883 -1.883 0.6459
K3 ZNQ103 2.06 2.14 0.021 -0.155 -2.408 -2.408 0.6458
K30 ZNQ130 1.92 1.88 0.019 -0.152 -1.866 -1.866 0.6456
K11 ZNQ111 1.82 2.72 0.027 -0.250 -2.581 -2.581 0.6453
K29 ZNQ129 1.87 2.12 0.021 -0.157 -2.064 -2.064 0.6436
K44 ZNQ144 1.94 1.49 0.015 -0.076 -1.563 -1.563 0.6356

Table 7

Correlation between phenotypic traits and comprehensive scores (F-value)"

性状Trait FF-value
生育期Period of duration 0.833**
株高Plant height 0.698**
主茎节数Node number of main stem 0.823**
主茎分枝数Branch number of main stem 0.208*
千粒重1000-grain weight 0.670**
单株粒数Seeds number per plant -0.499**

Fig.3

Dendrogram of 64 tartary buckwheat germplasms"

Table 8

Analysis of morphological traits of tartary buckwheat germplasm resources in different clusters"

性状Trait 种质群Germplasm group
粒色Grain color 黑,灰黑,
深褐,浅褐
浅灰,灰 灰色,浅灰,
深灰,黑
深灰、黑、
灰黑,浅灰
粒型Kernel shape 长锥,短锥 长锥,心形,短锥 长锥,短锥 长锥,心形,短锥 长锥,心形,短锥
株型Plant type 松散,紧凑,半紧凑 松散,紧凑,半紧凑 松散 松散,紧凑 松散,紧凑,半紧凑
抗倒性Lodging resistance 中抗,抗倒,倒伏 中抗,倒伏 倒伏 抗倒,中抗 中抗,抗倒,倒伏
生育期
Period of
duration (d)
平均值Mean 97.00 99.44 122.00 123.09 122.40
标准偏差SD 0.89 3.50 5.00 3.62 4.67
变异系数CV (%) 0.92 3.52 4.10 2.94 3.81
株高
Plant height
(cm)
平均值Mean 98.77 127.56 172.00 120.35 142.43
标准偏差SD 6.48 10.45 8.12 4.40 9.12
变异系数CV (%) 6.56 8.19 4.72 3.66 6.40
主茎粗
Diameter of main stem
(cm)
平均值Mean 0.55 0.93 1.14 0.44 0.67
标准偏差SD 0.28 0.18 0.23 0.24 0.23
变异系数CV (%) 50.00 19.02 19.76 53.48 34.30
主茎节数
Node number
of main stem
平均值Mean 10.33 12.33 20.07 22.53 23.17
标准偏差SD 0.77 1.59 3.64 3.23 2.92
变异系数CV (%) 7.41 12.92 18.11 14.35 12.59
主茎分枝数
Branch number
of main stem
平均值Mean 5.50 6.94 6.90 6.47 6.38
标准偏差SD 1.07 1.05 0.80 0.84 1.16
变异系数CV (%) 19.48 15.16 11.59 12.96 18.19
千粒重
1000-grain
weight (g)
平均值Mean 17.25 16.66 20.93 21.40 21.47
标准偏差SD 0.91 3.35 0.90 0.83 1.29
变异系数CV (%) 5.26 20.10 4.31 3.89 5.99
单株粒重
Seed weight
per plant (g)
平均值Mean 3.77 4.69 4.17 4.98 4.89
标准偏差SD 0.61 2.03 0.81 1.22 0.93
变异系数CV (%) 16.15 43.22 19.40 24.48 18.90
单株粒数
Seeds number
per plant
平均值Mean 219.41 285.39 199.80 233.63 228.41
标准偏差SD 37.93 105.72 43.98 61.19 43.17
变异系数CV (%) 17.29 37.04 22.01 26.19 18.90
[1] 范昱, 丁梦琦, 张凯旋 , 等. 中国野生荞麦种质资源概况与利用进展. 植物遗传资源学报, 2020,21(6):1395-1406.
[2] 唐宇, 邵继荣, 周美亮 . 中国荞麦属植物分类学的修订. 植物遗传资源学报, 2019,20(3):646-653.
[3] 徐笑宇, 方正武, 杨璞 , 等. 苦荞遗传多样性分析与核心种质筛选. 干旱地区农业研究, 2015,33(1):268-277.
[4] 贾瑞玲, 马宁, 魏立平 , 等. 50份苦荞种质资源农艺性状的遗传多样性分析. 干旱地区农业研究, 2015,33(5):11-16.
[5] 林汝法, . 中国荞麦. 北京: 农业出版社, 1994: 1-12.
[6] 赵钢, 唐宇, 王安虎 . 中国荞麦的育种现状与展望. 种子世界, 2002,7(7):3-4.
[7] 谭玉荣, 陶兵兵, 关郁芳 , 等. 苦荞类黄酮的研究现状及展望. 食品工业科技, 2012,33(18):377-381.
[8] 赵钢, 唐宇, 王安虎 . 苦荞的成分功能研究与开发应用. 四川农业大学学报, 2001,19(4):355-358.
[9] 李成磊, 赵海霞, 温国琴 , 等. 苦荞细胞色素CYP81家族同源基因Ftp450-R4的克隆、分子鉴定及其功能分析. 农业生物技术学报, 2015,23(2):181-192.
[10] 张艳 . 荞麦黄酮代谢合成相关基因的克隆及分析. 杨凌: 西北农林科技大学, 2008.
[11] 马婧 . 金荞麦[Fagopyrum dibotrys (D. Don) Hara]类黄酮生物合成途径重要功能基因的克隆、功能验证及表达特性分析. 重庆: 西南大学, 2012.
[12] Glaszmann J C, Killian B, Upadhyaya H D . Accessing genetic diversity for crop improvement. Current Opinion Plant Biology, 2010,13(3):167-173.
doi: 10.1016/j.pbi.2010.01.004
[13] 李荫藩, 郑敏娜, 梁秀芝 , 等. 苦荞种质资源生物学性状的多元统计分析与综合评价. 中国农学通报, 2016,32(6):40-48.
[14] 梁诗涵, 李境, 周达 , 等. 中国苦荞主产区苦荞种质形态性状的遗传多样性分析. 分子植物育种, 2020,18(21):7254-7266.
[15] 李春花, 尹桂芳, 王艳青 , 等. 云南苦荞种质资源主要性状的遗传多样性分析. 植物遗传资源学报, 2016,17(6):993-999.
[16] 南铭, 赵桂琴, 柴继宽 . 黄土高原半干旱区饲用燕麦种质表型性状遗传多样性分析及综合评价. 草地学报, 2017,25(6):1197-1205.
[17] 余斌, 杨宏羽, 王丽 , 等. 引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价. 作物学报, 2018,44(1):63-74.
[18] 张宗文, 林汝法 . 荞麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006: 9-24.
[19] 李晶, 南铭 . 俄罗斯和乌克兰引进冬小麦在我国西北地区的农艺性状表现和遗传多样性分析. 作物杂志, 2019(5):9-14.
[20] Shannon C E, Weaver W . The mathematical theory of communication. The University of Illinois,Urbana,Chicago,USA, 1949: 3224-3226.
[21] 南铭, 马宁, 刘彦明 , 等. 燕麦种质资源农艺性状的遗传多样性分析. 干旱地区农业研究, 2015,33(1):262-267.
[22] 胡银岗, 冯佰利, 周济铭 , 等. 荞麦遗传资源利用及其改良研究进展. 西北农业学报, 2005,14(5):101-109.
[23] 汪灿, 胡丹, 杨浩 , 等. 苦荞主要农艺性状与产量关系的多重分析. 作物杂志, 2013(6):18-22.
[24] 胡标林, 万勇, 李霞 , 等. 水稻核心种质表型性状遗传多样性分析及综合评价. 作物学报, 2012,38(5):829-839.
[25] 侯雅君, 张宗文, 吴斌 , 等. 苦荞种质资源AFLP标记遗传多样性分析. 中国农业科学, 2009,42(12):4166-4174.
[26] 李春花, 陈蕤坤, 王艳青 , 等. 利用SSR标记构建云南苦荞种质资源分子身份证. 分子植物育种, 2019,17(5):1575-1582.
[27] 邵美红, 吴伟, 林兵 , 等. ITS序列在苦荞麦种质资源鉴定中的应用. 中国农学通报, 2012,28(6):131-134.
[28] 农业部科技发展中心, 中国水稻研究所. 植物新品种特异性、一致性和稳定性测试指南总则:GB/T 19557.1-2004. 北京: 中国标准出版社, 2004.
[29] 西北农林科技大学, 农业部科技发展中心. 植物新品种特异性、一致性和稳定性测试指南荞麦:NY/T 2493-2013. 北京: 中国农业出版社, 2014.
[30] 要燕杰, 高翔, 吴丹 , 等. 小麦农艺性状与品质特性的多元分析与评价. 植物遗传资源学报, 2014,15(1):38-47.
[31] 高翔, 郝志萍, 吕慧卿 , 等. 荞麦抗倒性研究进展. 中国农学通报, 2019,35(13):6-11.
[1] Weng Wenfeng, Wu Xiaofang, Zhang Kaixuan, Tang Yu, Jiang Yan, Ruan Jingjun, Zhou Meiliang. The Overexpression of FtbZIP5 Improves Accumulation of Flavonoid in the Hairy Roots of Tartary Buckwheat and Its Salt Tolerance [J]. Crops, 2021, 37(4): 1-9.
[2] Zhang Quanfang, Jiang Mingsong, Chen Feng, Zhu Wenyin, Zhou Xuebiao, Yang Lianqun, Xu Jiandi. Analysis of Genetic Diversity of Rice Varieties (Lines) in Shandong Province [J]. Crops, 2021, 37(4): 26-31.
[3] Li Qiong, Chang Shihao, Wu Tingting, Geng Zhen, Yang Qingchun, Shu Wentao, Li Jinhua, Zhang Donghui, Zhang Baoliang. Analysis of Genetic Diversity and Genetic Relationship for 120 Soybean Germplasms [J]. Crops, 2021, 37(4): 51-58.
[4] Xiang Chao, Sun Suli, Zhu Zhendong, Zong Xuxiao, Yang Tao, Liu Rong, Yang Mei, Xian Dongfeng, Yang Xiuyan. Resistance and Molecular Identification to Powdery Mildew of Pea Germplasms in Sichuan [J]. Crops, 2021, 37(3): 51-56.
[5] Jin Jiangang, Tian Zaifang. Grey Correlation Analysis of Introduced Tartary Buckwheat in the Northern Shanxi [J]. Crops, 2021, 37(2): 52-56.
[6] Ma Mingchuan, Liu Longlong, Liu Zhang, Zhou Jianping, Nan Chenghu, Zhang Lijun. Analysis of SSR Loci in Whole Genome and Development of Molecular Markers in Tartary Buckwheat [J]. Crops, 2021, 37(1): 38-46.
[7] Pan Xiaoxue, Hu Mingyu, Wang Zhongwei, Wu Hong, Lei Kairong. Evaluation of Agronomic Traits and Cold Tolerance at Germination Stage in Rice (Oryza sativa L.) Germplasms [J]. Crops, 2021, 37(1): 47-53.
[8] Yang Wanjun, Pan Xiangyu, Wang Xiuhua, Wang Lu, Zhao Yan. Genetic Diversity Analysis of Yield and Agronomic Traits of 119 Alfalfa Varieties (Lines) [J]. Crops, 2020, 36(6): 17-22.
[9] Gao Jie, Feng Guangcai, Li Xiaorong, Li Qingfeng, Peng Qiu. Phenotypic Diversity and Clustering Analysis of Sorghum Germplasm Resources in Different Regions of Guizhou Province [J]. Crops, 2020, 36(6): 54-60.
[10] Lu Xiaoling, He Ming, Zhang Kaixuan, Liao Zhiyong, Zhou Meiliang. Study on the Cloning and Transformation of Rhamnose Transferase FtF3GT1 Gene in Tartary Buckwheat [J]. Crops, 2020, 36(5): 33-40.
[11] Yang Xuele, Zhang Lu, Li Zhiqing, He Luqiu. Diversity Analysis of Tartary Buckwheat Germplasms Based on Phenotypic Traits [J]. Crops, 2020, 36(5): 53-58.
[12] Gong Yanlong, Lei Yue, Yan Zhiqiang, Liu Xuewei, Zhang Dashuang, Wu Jianqiang, Zhu Susong. Comprehensive Evaluation of Phenotype Genetic Diversity in Japonica Rice Germplasm Resources in Different Ecological Zones [J]. Crops, 2020, 36(5): 71-79.
[13] Fan Yuanyuan, Wu Haimei, Pang Lei, Lu Jianlong, Xia Bowen, Yang Xuhai. Effects of Straw Mulching on Wheat Yield in Different Ecological Regions in Northern Semi-Arid Areas of China Based on Meta Analysis [J]. Crops, 2020, 36(4): 143-149.
[14] Chen Weiguo, Zhang Zheng, Shi Yugang, Cao Yaping, Wang Shuguang, Li Hong, Sun Daizhen. Drought-Tolerance Evaluation of 211 Wheat Germplasm Resources [J]. Crops, 2020, 36(4): 53-63.
[15] Qi Bingjie, Wang Min, Zhang Zhiyong, He Xin, Liu Jinghui. Diversity Analysis of Mineral Elements in Oat Germplasm Resources [J]. Crops, 2020, 36(4): 72-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!