Crops ›› 2021, Vol. 37 ›› Issue (5): 205-210.doi: 10.16035/j.issn.1001-7283.2021.05.031

Previous Articles     Next Articles

Evaluation of Drought Tolerance of Three Elymus nutans in Tibet

Zhou Jing1(), Sun Kan1, Zhou Zhongyi2, Wang Chuanqi3, Miao Yanjun3()   

  1. 1Shenzhen Beilinyuan Landscape and Architectural Design Institute Co., Ltd., Shenzhen 518038,Guangdong, China
    2The Grassland Workstation of Yakeshi, Yakeshi 022150, Inner Mongolia, China
    3Tibet Agriculture and Animal Husbandry College, Nyingchi 860000, Tibet, China
  • Received:2021-05-07 Revised:2021-06-17 Online:2021-10-15 Published:2021-10-14
  • Contact: Miao Yanjun E-mail:34941321@qq.com;myj666@126.com

Abstract:

This paper aimed to provide basis for drought resistance identification and breeding of native plants in Tibet, by exploring the physiological response to drought stress of wild Elymus nutans at seed germination stage and seedling stage. Two wild E. nutans seeds came from Baingoin county and Sog county in Naqu city of Tibet were used as experimental materials No. Ⅰ and No. Ⅱ, and the domesticated variety E.nutans G. cv. Baqing was used as reference material. The solution of polyethylene glycol (PEG-6000) and natural drought after potted plants to simulate drought stress environment at germination and seedling stages and determined the physiological indexes. The results were as followos: PEG-6000 inhibited the germination of No. I and No. II seeds, but the low concentration of PEG-6000 (-0.10MPa) was beneficial to the germination of E.nutans. PEG-6000 inhibited the growth of roots and buds of E. nutans, especially the buds. Under drought stress, the relative electrical conductivity and malondialdehyde content of E. nutans seedlings increased continuously, while the activities of superoxide dismutase, catalase and peroxide increased at first and then decreased. Through the analysis of average value of subordinate function. The three E.nutans tested materials had strong physiological drought tolerance at seed germination and seedling stages, and all of them belonged to grade II resistance. The order of drought tolerance was as follows: E.nutans G. cv. Baqing > E.nutans No. I > E.nutans No. II.

Key words: Elymus nutans Griseb., Alpine grassland, Germination and seedling stages, Antioxidant enzyme, Cell membrane damage

Table 1

Materials and source status"

材料
Material
采集地
Source site
地理坐标
Geographical coordinates
海拔
Altitude
(m)
生境
Habitat
Ⅰ号No.Ⅰ 班戈县
城北20km
31°28′ N;
89°50′ E
4 742 公路边
Ⅱ号No.Ⅱ 索县 32°02′ N;
94°03′ E
3 985 高寒
草原
巴青垂穗披碱草
E.nutans G. cv. Baqing
- - - -

Table 2

Effects of drought stress on seed germination of E. nutans"

材料Material 指标
Index
环境水势Environmental water potential
0.00MPa -0.10MPa -0.20MPa -0.40MPa -0.80MPa -1.00MPa
Ⅰ号No.Ⅰ GP (%) 84.50±2.11aA 76.50±4.32aA 63.00±4.90abA 48.50±4.82bA 36.75±3.90bcA 25.50±0.87cB
GI 40.03±1.27aA 32.45±3.50aA 26.67±3.69abA 20.21±3.71bA 12.85±4.78bcA 10.53±1.22cA
VI 212.96±5.33aA 161.28±7.12abA 129.08±6.90bA 83.27±2.50cB 45.75±1.27dB 32.12±3.23dB
Ⅱ号No.Ⅱ GP (%) 85.25±2.21aA 76.50±2.64abA 66.25±2.33abA 53.75±3.40bA 38.50±4.45bcA 29.25±2.21cB
GI 43.44±3.34aA 35.67±4.07aA 30.89±2.61abA 23.79±4.26bA 17.67±2.89bcA 14.45±3.34cA
VI 253.26±7.12aA 217.39±3.14abA 145.18±3.83bA 92.31±1.67cB 60.61±1.48dB 47.97±7.12dB
巴青垂穗披碱草 GP (%) 92.50±2.53aA 93.50±4.13aA 72.50±3.45aA 66.25±3.36abA 46.00±4.79bA 32.50±1.49bB
E.nutans G. cv. Baqing GI 47.25±2.78abA 53.10±2.76aA 39.82±1.90abA 33.45±2.96bA 22.98±5.39bA 19.50±1.33bA
VI 287.94±4.32aA 326.57±5.76aA 226.58±7.84abA 173.84±4.62bA 108.70±3.59cB 53.43±4.20dB

Table 3

Effects of drought stress on growing of E. nutans seedlings"

材料Material 指标
Index
环境水势Environmental water potential
0.00MPa -0.10MPa -0.20MPa -0.40MPa -0.80MPa -1.00MPa
Ⅰ号No.Ⅰ 根长 (cm) 5.32±1.15a 4.97±1.22a 4.84±1.31ab 4.12±0.94ab 3.56±1.36ab 3.05±0.95b
芽长 (cm) 12.92±2.26a 11.45±2.71ab 10.39±1.96ab 7.93±2.05b 5.72±1.59bc 4.01±2.30c
根芽比 0.41±0.01b 0.43±0.01b 0.47±0.03ab 0.52±0.02ab 0.62±0.01ab 0.76±0.04a
Ⅱ号No.Ⅱ 根长 (cm) 4.83±1.05a 4.76±1.24a 4.52±1.35a 3.88±1.69ab 3.43±1.48ab 2.74±0.97b
芽长 (cm) 12.34±1.47a 10.71±1.77ab 9.77±1.82ab 7.64±2.13b 6.07±1.91b 3.65±1.22c
根芽比 0.39±0.01b 0.44±0.02b 0.46±0.03ab 0.51±0.02ab 0.56±0.02ab 0.75±0.03a
巴青垂穗披碱草 根长 (cm) 5.69±1.72a 6.15±2.03a 6.03±2.46a 5.63±1.92a 5.10±2.33a 4.32±2.15a
E.nutans G. cv. Baqing 芽长 (cm) 13.80±2.35a 12.86±1.34a 11.69±3.01a 9.50±2.17ab 7.99±1.42b 5.32±1.09b
根芽比 0.41±0.02b 0.47±0.04b 0.52±0.02ab 0.59±0.01ab 0.64±0.01ab 0.81±0.02a

Table 4

Subordinate function value and subordinate degree of E. nutans under drought stress at germination stage"

材料
Material
测定指标Determination index 隶属度
Subordinate
degree
GP GI VI 根长
Root
length
芽长
Bud
length
Ⅰ号No.Ⅰ 0.526 0.500 0.482 0.532 0.570 0.522
Ⅱ号No.Ⅱ 0.548 0.490 0.484 0.500 0.454 0.495
巴青垂穗披碱草
E.nutans G.
cv. Baqing
0.582 0.544 0.532 0.534 0.534 0.554

Table 5

Effects of drought stress on cell membrane damage degree of seedlings"

材料
Material
指标
Index
干旱胁迫天数Drought stress days
0d 7d 14d 21d
Ⅰ号No.Ⅰ REC (μS/cm) 9.67±2.41bB 34.83±5.69aA 42.01±6.37aA 50.22±5.48aA
MDA (nmol/g) 3.49±1.16cB 20.95±3.24bAB 35.33±4.31aA 36.32±4.65aA
Ⅱ号No.Ⅱ REC (μS/cm) 13.00±2.40cB 31.00±3.35bAB 49.81±5.79aA 62.70±6.39aA
MDA (nmol/g) 5.57±1.06bB 30.69±3.84aA 39.28±4.13aA 43.30±5.39aA
巴青垂穗披碱草 REC (μS/cm) 6.40±2.73cB 23.67±4.38bAB 38.28±5.09aA 47.79±5.24aA
E.nutans G. cv. Baqing MDA (nmol/g) 2.46±0.71cB 18.61±2.14bAB 23.67±3.69abA 27.96±2.95aA

Table 6

Changes of antioxidant enzyme activities in seedling leaves under drought stress"

材料
Material
指标
Index
干旱胁迫天数Drought stress days
0d 7d 14d 21d
Ⅰ号No.Ⅰ SOD [U/(g FW·h)] 27.94±3.21cB 45.15±2.97bAB 79.36±5.04aA 69.10±5.33aA
POD [U/(g FW·min)] 115.40±6.39bA 186.90±5.72aA 273.40±9.31aA 253.70±8.04aA
CAT [mg H2O2/(g FW·min)] 10.41±2.83bA 22.04±4.11aA 29.49±3.76aA 27.67±3.25aA
Ⅱ号No.Ⅱ SOD [U/(g FW·h)] 18.59±4.52cB 32.74±5.26bAB 60.43±4.92aA 57.06±5.67aA
POD [U/(g FW·min)] 117.20±6.33bA 189.80±7.39aA 256.90±9.34aA 231.70±8.56aA
CAT [mg H2O2/(g FW·min)] 6.56±2.47bA 17.09±4.41aA 23.50±3.97aA 18.71±4.08aA
巴青垂穗披碱草 SOD [U/(g FW·h)] 23.72±5.36cB 48.45±4.73bAB 87.12±5.69aA 82.33±4.92aA
E.nutans G. cv. Baqing POD [U/(g FW·min)] 186.10±7.04bA 279.90±9.31aA 369.80±10.22aA 353.60±9.87aA
CAT [mg H2O2/(g FW·min)] 9.81±2.57bA 26.67±3.45aA 34.51±4.73aA 33.21±4.09aA

Table 7

Subordinate function value and subordinate degree of E. nutans at seedling stage"

材料
Material
指标Index 隶属度
Subordinate
degree
REC MDA SOD POD CAT
Ⅰ号No.Ⅰ 0.605 0.619 0.589 0.532 0.609 0.591
Ⅱ号No.Ⅱ 0.526 0.640 0.585 0.564 0.585 0.580
巴青垂穗披碱草
E.nutans G.
cv. Baqing
0.557 0.589 0.579 0.605 0.658 0.598
[1] 赵新全, 周华坤. 三江源区生态环境退化、恢复治理及其可持续发展. 中国科学院院刊, 2005, 20(6):41-47.
[2] 王传旗, 刘文辉, 张永超, 等. 野生老芒麦苗期耐旱性品种筛选及鉴定. 草业科学, 2021, 38(5):903-917.
[3] 牛素贞, 宋勤飞, 樊卫国, 等. 干旱胁迫对喀斯特地区野生茶树幼苗生理特性及根系生长的影响. 生态学报, 2017, 37(21):7333-7341.
[4] 李彦彬, 冯娅, 边泽鹏, 等. 花前干旱胁迫对冬小麦生长指标的影响. 灌溉排水学报, 2021, 40(3):23-30.
[5] 杨淑君, 刘筱, 王锐洁, 等. 模拟干旱胁迫对垂盆草生长和光合特性的影响. 北方园艺, 2019(9):125-131.
[6] 秦立刚, 李雷, 李韦瑶, 等. PEG干旱胁迫对3种葱属植物种子萌发期渗透调节物质及酶活性的影响. 草地学报, 2021, 29(1):72-79.
[7] 苏志豪, 周晓兵, 姜小龙, 等. 不同土壤水分条件下沙生柽柳的生理生化特征及适应性. 干旱区研究, 2021, 38(1):198-206.
[8] 马青枝, 李造哲, 马文喜. 披碱草和野大麦种子萌发期抗旱性研究. 内蒙古农业大学学报, 2014, 35(2):50-55.
[9] 余方玲, 杨满业, 干友民, 等. 川西北高寒草地3种禾草种子萌发期抗旱性. 草业科学, 2011, 28(6):993-997.
[10] 张小娇, 祁娟, 曹文侠, 等. 干旱胁迫对垂穗披碱草苗期抗旱生理特性的影响. 草原与草坪, 2014, 34(5):55-59.
[11] 王传旗, 苗彦军, 王建林, 等. 西藏野生垂穗披碱草苗期抗旱性研究. 中国草地学报, 2017, 39(4):116-120.
[12] 李积宏, 贡觉顿珠, 李茂善, 等. 那曲地区30年日照时数及蒸发量变化特征和相关分析. 西藏科技, 2014(12):61-64.
[13] 王传旗, 徐雅梅, 白玛曲珍, 等. 光、温对西藏三种野生披碱草属牧草种子萌发的影响. 黑龙江畜牧兽医, 2017(9):150-154.
[14] Michel B E, Kavfmann M R. The osmotic potential of polyethylene glycol 6000. Plant Physidogy, 1973, 51(5):914-916.
[15] 周晶, 王传旗, 包赛很那, 等. 西藏高寒草地15份野生牧草种子萌发特性研究. 黑龙江畜牧兽医, 2018(6):114-116.
[16] 孙艳茹, 石屹, 陈国军, 等. PEG模拟干旱胁迫下8种绿肥作物萌发特性与抗旱性评价. 草业学报, 2015, 24(3):89-98.
[17] 郭晋梅, 刘娟, 董宽虎. PEG胁迫对白羊草种子萌发的影响. 中国草地学报, 2015, 37(2):58-62.
[18] 高俊凤. 植物生理学试验教程. 北京: 高等教育出版社, 2006.
[19] 张志良, 瞿伟菁. 植物生理学试验指导:第3版. 北京: 高等教育出版社, 2005.
[20] 鱼小军, 张建文, 潘涛涛, 等. 铜、镉、铅对7种豆科牧草种子萌发和幼苗生长的影响. 草地学报, 2015, 23(4):794-803.
[21] 祁娟, 徐柱, 王海清, 等. 披碱草与老芒麦苗期抗旱性综合评价. 草地学报, 2009, 17(1):36-42.
[22] 刘玉英, 李卓琳, 韩佳育, 等. 模拟降雨量变化与CO2浓度升高对羊草光合特性和生物量的影响. 草业学报, 2015, 24(11):128-136.
[23] 王传旗, 张文静, 德吉卓玛, 等. 西藏浪卡子县野生垂穗披碱草种子萌发对水盐胁迫的响应. 种子, 2013, 11(32):15-19.
[24] 王传旗, 武俊喜, 余成群, 等. 环境因子对西藏巴青县野生垂穗披碱草种子萌发的影响. 草地学报, 2017, 25(5):1103-1107.
[25] 闫兴富, 邓晓娟, 王静, 等. 种子大小和干旱胁迫对辽东栎幼苗生长和生理特性的影响. 应用生态学报, 2020, 31(10):3331-3339.
[26] 王传旗, 徐雅梅, 梁莎, 等. 西藏野生老芒麦种子萌发对温度和水分的响应. 作物杂志, 2017(6):165-169.
[27] 汪建军, 麻安卫, 汪治刚. 不同温度和PEG处理对中华羊茅种子萌发的影响. 草业学报, 2016, 25(4):73-80.
[28] 张文婷, 刘富强, 王华田, 等. 城市绿地植物萱草和结缕草的抗旱性研究. 中国农学通报, 2008, 24(8):327-331.
[29] Sclote D S, Khanna-Chopra R. Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant do tense at cellular and subccllular level in leaves of wheat seedlings. Physiologia Plantarum, 2006, 127:494-506.
doi: 10.1111/j.1399-3054.2006.00678.x
[30] 许令明, 曹昀, 汤思文, 等. 干旱胁迫及复水对花叶芦竹生理特性的影响. 中国水土保持科学, 2020, 18(3):59-66.
[31] 许爱云, 曹兵, 谢云. 干旱风沙区煤炭基地12种草本植物对干旱胁迫的生理生态响应及抗旱性评价. 草业学报, 2020, 29(10):22-34.
[1] Pei Zhichao, Zhou Jihua, Xu Xiangdong, Lan Hongliang, Wang Junying, Lang Shuwen, Zhang Weiqiang. Effects of Drought Treatment on Photosynthesis Rate, Antioxidant Properties of Leaves and Yield of Different Maize Varieties [J]. Crops, 2021, 37(5): 95-100.
[2] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings [J]. Crops, 2018, 34(4): 131-137.
[3] Lirong Bai,Liran Shi,Xiaoli Guo,Xiaona Zhang. Effects of Water Stress on Physiological Characteristics of Different Genotypes of Triticale and Rye Seedlings [J]. Crops, 2016, 32(4): 118-122.
[4] Zhurong Zheng,Ruixiang Zhang,Tingting Yang,Lichao Wen,Xuefeng Shen. Effects of Salt Stress on Physiological and Biochemical Characteristics of Roots in Peanut [J]. Crops, 2016, 32(4): 142-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!