Crops ›› 2016, Vol. 32 ›› Issue (4): 118-122.doi: 10.16035/j.issn.1001-7283.2016.04.019

Previous Articles     Next Articles

Effects of Water Stress on Physiological Characteristics of Different Genotypes of Triticale and Rye Seedlings

Bai Lirong,Shi Liran,Guo Xiaoli,Zhang Xiaona   

  1. Department of Life Science,Hengshui University,Hengshui 053000,Hebei,China
  • Received:2016-03-31 Revised:2016-06-30 Online:2016-08-15 Published:2018-08-26

Abstract:

Eight varieties of triticale and one rye cultivars were treated with 20% polyethylene glycol 6000 simulated drought stress, and then seedling fresh weight, MDA content, organic osmoregulation substance such as proline, soluble sugar, soluble protein contents and three antioxidant enzymes (SOD, POD, CAT) activity were determined. The results showed that the seedling fresh weight of all varieties decreased, MDA content increased, proline content and soluble sugar content increased with water stress. But the soluble protein contents rised in some varieties (Jisi 2, Zhongxin 830, Dongmu 70, Zhongsi 237), while reduced in some other varieties(NTH1048, NTH1888, Zhongs828, Jinsong 49). The activity of SOD were increased, and the changes of activities of POD, CAT were different in all the 9 varieties. After a comprehensive analysis of the membership function, the drought resistance order of 9 varieties was as follows: Zhongxin 830>Zhongsi 237>Jisi 2>Jisi 1>Dongmu 70>Zhongsi 828>NTH1048>Jinsong 49>NTH1888.

Key words: Water stress, Triticale, Rye, Organic osmoregulation substance, Antioxidant enzymes, Degree of membership

Fig.1

Effects of water stress on the fresh weight of triticale and rye seedlings The different letters mean significant difference among the different treatment at 0.01 levels,the same below."

Fig.2

Effects of water stress on the MDA content of triticale and rye seedlings"

Table 1

Effects of water stress on the antioxidant enzymes activities of triticale and rye seedlings"

品种Varieties SOD(U/g FW) POD(U/g FW) CAT(U/g FW)
CK 20% PEG 增长率(%)
Increase rate
CK 20% PEG 增长率(%)
Increase rate
CK 20% PEG 增长率(%)
Increase rate
NTH1888 178AB 198A 11.0 9 380A 9 640A 2.8 81A 88A 8.8
NTH1048 209B 251A 20.3 13 465A 11 665B -13.4 83A 89A 7.2
中饲828 Zhongsi 828 210B 286A 36.1 12 945A 9 095B -29.7 90B 106A 17.8
劲松49 Jinsong 49 305AB 337A 10.6 20 035A 18 635AB -7.0 143A 130B -9.1
冀饲1号 Jisi 1 260B 330A 27.1 12 835A 9 130B -28.9 108A 114A 5.6
冀饲2号Jisi 2 212B 298A 40.4 13 275A 10 165B -23.4 82B 100A 22.0
中饲237 Zhongsi 237 252B 287A 13.8 10 900A 10 935A 0.3 113B 133A 17.7
中新830 Zhongxin 830 239B 327A 36.8 9 525B 12 444A 30.6 102B 120A 17.6
冬牧70 Dongmu 70 277B 319A 15.4 8 700B 17 350A 99.4 126A 106B -15.9

Table 2

The change of organic osmoregulation substance contents in leaf of different varieties triticale, rye seedlings on water stress"

品种
Varieties
脯氨酸Proline(μg/g·FW) 可溶性糖Soluble sugar (mg/g·FW) 可溶性蛋白Soluble protein(mg/g·FW)
CK 20% PEG 增长率(%)Increasing rate CK 20% PEG 增长率(%)
Increase rate
CK 20% PEG 增长率(%)
Increase rate
NTH1888 18.9B 223.9A 1 085 21.8B 27.1A 24.3 4.9A 3.5B -28.6
NTH1048 14.5B 178.3A 1 130 10.7B 29.0A 171.0 9.3A 5.8B -37.6
中饲828 Zhongsi 828 1.8B 44.8A 2 389 7.4B 21.9A 196.0 6.34A 4.9B -22.2
劲松49 Jinsong 49 10.9B 96.0A 781 15.4 B 18.7A 21.4 7.3A 6.5B -10.9
冀饲1号 Jisi 1 1.4B 24.1A 1 621 14.1B 24.9A 76.6 6.0A 6.0A 0
冀饲2号 Jisi 2 1.3B 19.9A 1 431 16.7B 26.3A 57.5 4.2B 5.9A 40.5
中饲237 Zhongsi 237 10.3B 72.3A 602 17.3B 25.9A 49.7 3.5B 6.4A 82.6
中新830 Zhongxin 830 8.6B 99.5A 1 057 19.8B 29.3A 47.9 4.8B 7.9A 64.6
冬牧70 Dongmu 70 14.6B 92.9A 536 15.1B 31.3A 107.3 3.9B 6.8A 74.4

Table 3

Membership degree of different varieties in water stress"

品种Varieties 鲜重
Fresh weight
MDA 脯氨酸
Proline
可溶性糖
Soluble sugar
可溶性蛋白
Soluble protein
SOD POD CAT 隶属度
Degree of membership
NTH1888 0.19 0.39 1.00 0.20 0.00 0.00 0.12 0.10 0.25
NTH1048 0.42 0.73 0.80 1.00 0.11 0.36 0.13 0.10 0.46
中饲828 Zhongsi 828 0.43 0.89 0.35 0.75 0.13 0.74 0.00 0.53 0.48
劲松49 Jinsong 49 0.00 0.42 0.23 0.00 0.32 0.67 0.39 0.43 0.31
冀饲1号 Jisi 1 0.66 0.70 0.05 0.38 0.34 0.88 0.00 0.46 0.43
冀饲2号 Jisi 2 1.00 1.00 0.00 0.34 0.55 0.87 0.05 0.49 0.54
中饲237 Zhongsi 237 0.74 1.00 0.09 0.29 0.88 0.47 0.16 1.00 0.58
中新830 Zhongxin 830 0.95 0.85 0.36 0.37 1.00 1.00 0.35 0.77 0.71
冬牧70 Dongmu 70 0.58 0.00 0.12 0.75 0.88 0.65 1.00 0.01 0.50
[1] 万燕, 韦爽, 贾晓凤 , 等.荞麦抗旱性研究进展.作物杂志,2015(2):23-26.
[2] 孙元枢 . 中国小黑麦遗传育种研究与应用.宁波: 浙江科学技术出版社, 2002: 235-237.
[3] 李吉跃 .植物耐旱性及其机理. 北京林业大学学报, 1991,13(3):92-97.
[4] Larther W.Physiological Plant Ecology .New York:Springer-verlag, 1980: 303-304.
[5] 李春艳, 李诚, 艾尼瓦尔 , 等. 春性饲草型小黑麦抗旱性的综合评价. 麦类作物学报, 2008,28(6):1080-1085.
[6] 张微, 李春艳, 曹连莆 , 等. 春性小黑麦材料抗旱性的比较研究. 石河子大学学报(自然科学版), 2009,27(5):529-535.
[7] 李春艳, 李诚, 艾尼瓦尔 , 等. 春性饲草型小黑麦芽期抗旱性鉴定指标的确立. 种子, 2009,28(3):67-70.
[8] 王曙光, 孙黛珍, 周福平 , 等. 六倍体小黑麦萌发期抗旱性分析. 中国生态农业学报, 2008,16(6):1403-1408.
[9] 李会芬, 时丽冉, 崔兴国 , 等. 不同品种小黑麦萌发期耐旱性比较. 种子, 2012,30(8):23-25.
[10] 魏亦农, 孔广超, 曹连莆 . 干旱胁迫对春小麦与小黑麦光合特性影响的比较. 干旱地区农业研究, 2001,21(3):134-136.
[11] 李合生 . 植物生理生化实验原理和技术.北京: 高等教育出版社, 2003.
[12] 王学奎 . 植物生理生化实验原理和技术.北京: 高等教育出版社, 2000.
[13] 张明生, 刘志, 戚金亮 , 等. 甘薯品种抗旱适应性综合评价的方法研究. 热带亚热带植物学报, 2005,13(6):469-474.
[14] Bowler C, Van M, Inzc D . Superoxide dismutase and stress tolerance. Annual Review Plant Physiology and Plant Molecular Biology, 1992,43:83-116.
doi: 10.1146/annurev.pp.43.060192.000503
[15] 朱俊刚, 王曙光, 李晓燕 , 等. PEG胁迫对六倍体小黑麦幼苗SOD,POD活性及MDA含量的影响. 中国农学通报, 2009,25(18):202-204
[16] Singh T N, Aspinall D, Paleg L G . Proline accumulation and varical adaptability to drought in barley:a potential metabolic measure of drought resistance. Nature New Biology, 1972,236:188-190.
[17] 王启明, 李方远, 徐心诚 , 等.干旱胁迫对花荚期大豆叶片细胞膜透性和渗透调节物质含量的影响.河南农业科学,2005(8):39-42.
[18] 徐民俊, 刘桂茹, 扬学举 , 等. 水分胁迫对抗旱性不同冬小麦品种可溶性蛋白质的影响. 干旱地区农业研究, 2002,20(3):85-92.
[19] 赵天宏, 沈秀瑛, 杨德光 , 等. 水分胁迫对不同抗旱性玉米幼苗叶片蛋白质的影响. 沈阳农业大学学报, 2002,33(6):408-410.
[20] 王金玲, 董心久, 田成军 , 等. 水分胁迫对小黑麦生理生化特性和可溶性蛋白质的影响. 麦类作物学报, 2006,26(5):137-139.
doi: 10.7606/j.issn.1009-1041.2006.05.229
[1] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings [J]. Crops, 2018, 34(4): 131-137.
[2] Chang Liu,Xuemei Li,Jiayuan Tan,Xiaomin Liang,Xuemei Li. Effects of Water Stress Simulated by PEG on Content of Mineral Elements in Rice Seedlings [J]. Crops, 2017, 33(5): 162-167.
[3] Xiyu Hao,Hongdan Wang,Zhichao Yin,Jie Liang,Fengxiang Yin,Jianjun Hao. Effects of PEG Stress on Drought Resistance at Seedling Stage of Adzuki Beans and the Establishment of Drought Resistance Identification System [J]. Crops, 2017, 33(4): 134-142.
[4] Xuemei Li,Chang Liu,Qianwen Liu,Yudi Zhang,Xuemei Li. The Effects of PEG Pretreatment on the Isozymes and Expression of Antioxidant Enzymes in Rice Leaves under Water Stress [J]. Crops, 2016, 32(6): 107-111.
[5] Zhurong Zheng,Ruixiang Zhang,Tingting Yang,Lichao Wen,Xuefeng Shen. Effects of Salt Stress on Physiological and Biochemical Characteristics of Roots in Peanut [J]. Crops, 2016, 32(4): 142-145.
[6] Hezheng Wang,Huan Liu,Bei Li,Chenglong Sun,Bingbing Yin,Jun Zhang,Xinzhi Bao. Effects of Exogenous Substances on Physiological Characteristics in Wheat after Anthesis under Water Stress [J]. Crops, 2016, 32(3): 139-143.
[7] . [J]. Crops, 2013, 29(3): 107-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .