Crops ›› 2022, Vol. 38 ›› Issue (2): 119-126.doi: 10.16035/j.issn.1001-7283.2022.02.017

Previous Articles     Next Articles

Research on the Relationship between Water Use and Dry Matter Accumulation and Quality of Wide Space Sowing Winter Wheat and the Regulation of Sowing Density

Hao Ruixuan(), Sun Min(), Ren Aixia, Lin Wen, Wang Peiru, Han Xuyang, Wang Qiang, Gao Zhiqiang   

  1. College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2021-02-21 Revised:2021-06-10 Online:2022-04-15 Published:2022-04-24
  • Contact: Sun Min E-mail:haoruixuan123456@163.com;sm_sunmin@126.com

Abstract:

In order to clarify the yield and quality mechanism of the wide space seed technology in winter wheat, the effects of different seeding densities on the dry matter accumulation, the plant water use efficiency and the quality of Wide Space Sowing (WSS) winter wheat were examined quality wheat production base in Western High-Huai-Hai Basin from 2017 to 2018. The results showed that, when the seeding density was 4.8×106 plant/ha, the dry matter accumulation of plant in each phase, water consumption before flowering and total water consumption in growth period increased and significantly increased yield (3.5%-16.2%), improve the water use efficiency (1.3%-11.8%). The treatment with seeding density of 4.8×106 plant/ha increased the grain protein and its componentes content significantly, the total protein increased by 2.5%-11.8% and the glutenin/gliadin ratio was increased. The contents of wet gluen, dry gluten and starch were increased significantly. The gelatinization properties of starch was improved, and the peak viscosity, retention viscosity, final viscosity and gelatinization temperature all reached significant values. Compared with other seeding density treatments, the water absorption and the development of wheat reached the highest with a seeding density of 2.4×106 plant/ha. The stabilization time and the farinograph quality number were higher than other treatments with seeding densities of 2.4×106 and 4.8×106 plant/ha. The softening degree of 3.6×106 plant/ha treatment was the highest. Under different seeding densities, there was a significantly positive correlation between soil water consumption and yield in the joint-flowering period. It was also positively correlated with grain protein content, glutenin/gliadin ratio, starch content, wet gluten content, dry gluten content, and gluten index. In short, the seeding density of winter wheat with 4.8×106 plant/ha was beneficial to increase plant dry matter accumulation, water consumption before flowering, yield, WUE and grain nutrition quality and flour processing quality, and achieve high quality, high yield and high efficiency in winter wheat.

Key words: Winter wheat, Wide space sowing, Seeding density, Yield, Nutritional quality, Processing quality

Table 1

Effects of different seeding densities on water consumption and its proportion in different growth periods of winter wheat"

播种密度
(万株/hm2
Seeding density
(×104/hm2)
播种期―越冬期
Sowing-pre-wintering
越冬期―拔节期
Pre-wintering-jointing
拔节期―开花期
Jointing-anthesis
开花期―成熟期
Anthesis-mature
耗水量
Water consumption
(mm)
比例
Proportion
(%)
耗水量
Water consumption
(mm)
比例
Proportion
(%)
耗水量
Water consumption
(mm)
比例
Proportion
(%)
耗水量
Water consumption
(mm)
比例
Proportion
(%)
240 87.42c 21.18b 46.50c 11.27b 141.44b 34.27b 137.34b 33.28a
360 80.44d 19.33c 51.73b 12.43a 146.95b 35.31b 137.02b 32.93a
480 79.33d 18.26c 54.50a 12.54a 156.97a 36.13a 143.68a 33.07a
600 93.30b 21.96b 43.46d 10.23c 144.54b 34.01b 143.66a 33.81a
720 106.23a 25.74a 45.37c 10.99b 134.07c 32.49c 127.00c 30.77b

Table 2

Effects of different seeding density on water use efficiency (WUE) of winter wheat"

播种密度(万株/hm2
Seeding density
(×104/hm2)
生育期降水量
Rainfall in growth
period (mm)
生育期灌水量
Irrigation during
growth period (mm)
生育期
总耗水量
ET (mm)
降水利用效率
RUE
kg/(hm2·mm)
灌水利用效率
IWUE
kg/(hm2·mm)
水分利用效率
WUE
kg/(hm2·mm)
240 218.3 120 412.71c 27.47e 49.98e 14.53d
360 218.3 120 416.13c 29.51c 53.68c 15.48bc
480 218.3 120 434.48a 32.79a 59.65a 16.47a
600 218.3 120 424.96b 31.63b 57.54b 16.25ab
720 218.3 120 412.68c 28.41d 51.68d 15.03cd

Table 3

Effects of seeding density on yield and plant dry matter accumulation of winter wheat in different growth periods"

播种密度
(万株/hm2
Seeding
density
(×104/hm2)
干物质积累量Dry matter accumulation (kg/hm2) 穗数
Ear number
(×104/hm2)
穗粒数
Grain
number
per spike
千粒重
1000-grain
weight (g)
产量
Yield
(kg/hm2)
播种期―越冬期
Sowing-
pre-wintering
越冬期―拔节期
Pre-wintering-
jointing
拔节期―开花期
Jointing-
anthesis
开花期―成熟期
Anthesis-
mature
240 3605.25c 986.33b 4896.22d 3920.62e 562.33c 32.95ab 39.12c 5997.57e
360 3786.32b 1056.68ab 5561.65bc 4041.62d 597.67b 31.99b 39.90bc 6442.10c
480 4022.77a 1125.99a 6200.37a 4947.14a 636.00a 33.85a 41.20a 7158.30a
600 3804.43b 1161.93a 5757.67b 4507.27b 605.33b 32.72ab 41.06a 6905.34b
720 3729.79b 975.46b 5311.78c 4289.14c 593.33b 29.50c 40.68ab 6201.40d

Table 4

Effects of different seeding density on nutritional quality of winter wheat"

播种密度(万株/hm2
Seeding density (×104/hm2)
清蛋白
Albumin (%)
球蛋白
Globulin (%)
醇溶蛋白
Gliadin (%)
谷蛋白
Glutenin (%)
谷/醇
Glu/Gli
总蛋白质含量
Total protein content (%)
淀粉含量
Starch content (%)
240 2.44c 1.57c 4.29c 4.28c 1.00b 13.80d 72.17d
360 2.53b 1.62b 4.36b 4.51ab 1.03a 14.66b 75.47c
480 2.74a 1.81a 4.40a 4.59a 1.04a 15.04a 82.34a
600 2.50b 1.61bc 4.23d 4.37bc 1.03a 14.22c 78.11b
720 2.28d 1.31d 3.91e 3.90d 1.00b 13.26e 72.23d

Table 5

Effects of different seeding density on starch gelatinization characteristics of winter wheat"

播种密度(万株/hm2
Seeding density
(×104/hm2)
峰值黏度
Peak viscosity
(cP)
保持黏度
Trough viscosity
(cP)
稀懈值
Breakdown
(cP)
回升值
Setback
最终黏度
Final viscosity
(cP)
峰值时间
Peak time
(min)
糊化温度
Pasting temperature
(℃)
240 1850.00d 1235.00c 615.00bc 1163.00ab 2398.00c 5.80a 85.18b
360 1681.50e 1111.00d 570.50c 1046.50c 2157.50d 5.70b 84.73c
480 2065.50a 1365.00a 700.50a 1192.00a 2557.00a 5.80a 85.60a
600 1986.50b 1296.00b 690.50a 1174.00a 2470.00b 5.77ab 84.68c
720 1936.50c 1278.00b 658.50ab 1125.00b 2403.00c 5.70b 84.73c

Table 6

Effects of different seeding density on processing quality of winter wheat flour"

播种密度(万株/hm2
Seeding density
(×104/hm2
湿面筋含量
Wet gluten
content (%)
干面筋含量
Dry gluten
content (%)
面筋指数
Gluten
index
吸水率
Water
absorption (%)
形成时间
Development
time (min)
稳定时间
Stability time
(min)
弱化度
Softening
degree (FU)
粉质质量数
Farinograph
quality number
240 28.55d 9.42c 67.76bc 65.40a 1.80a 1.15ab 19.50b 47.95a
360 33.45b 10.71b 74.42a 65.05ab 1.65b 0.95c 28.00a 34.80b
480 36.30a 12.40a 74.85a 64.95c 1.70b 1.20a 19.00b 47.15a
600 32.00c 11.10b 69.40b 64.25bc 1.70bc 1.05bc 27.50a 34.50b
720 26.75e 9.37c 65.75c 63.55c 1.60c 1.05bc 27.50a 36.00b

Table 7

Relationships between water consumption in different growth periods and plant dry matter accumulation amount, yield in winter wheat"

阶段耗水量
Water consumption
干物质积累量Dry matter accumulation 产量
Yield
播种期―越冬期
Sowing-pre-wintering
越冬期―拔节期
Pre-wintering-jointing
拔节期―开花期
Jointing-anthesis
开花期―成熟期
Anthesis-mature
播种期―越冬期Sowing-pre-wintering -0.3199 -0.2222 -0.3817 -0.1403 -0.3549
越冬期―拔节期Pre-wintering-jointing 0.1228 0.5265 0.3654 0.3913
拔节期―开花期Jointing-anthesis 0.6894* 0.5880 0.7529**
开花期―成熟期Anthesis-mature 0.4894 0.6697*

Table 8

Relationship between water consumption in different growth periods and nutritional quality in winter wheat"

阶段耗水量
Water consumption
谷/醇
Glu/Gli
蛋白质含量
Protein content
淀粉含量
Starch content
播种期―越冬期
Sowing-pre-wintering
-0.6850 -0.8921* -0.5648
越冬期―拔节期
Pre-wintering-jointing
0.5689 0.7840 0.5694
拔节期―开花期
Jointing-anthesis
0.8563* 0.9680** 0.8973*
开花期―成熟期
Anthesis-mature
0.7814 0.7877 0.7894

Fig.1

Relationship between water consumption in different growth periods and processing quality in winter wheat X1: soluble sugar content, X2: dry gluten content, X3: gluten index, X4: water absorption, X5: development time, X6: stability time, X7: softening degree, X8: farinograph quality number, X9: peak viscosity, X10: trough viscosity, X11: breakdown, X12: setback, X13: final viscosity, X14: peak time, X15: pasting temperature"

[1] 李新强, 高阳, 黄玲, 等. 播期和播量对冬小麦产量和品质的影响. 灌溉排水学报, 2014, 33(2):17-20.
[2] 樊高琼, 杨文钰, 任万军, 等. 不同带宽对套作小麦产量及边际效应的影响. 四川农业大学学报, 2009, 27(2):133-136.
[3] 段剑钊, 李世莹, 郭彬彬, 等. 宽幅播种对冬小麦群体质量及产量的影响. 核农学报, 2015, 29(10):2013-2019.
[4] 吕鹏, 吕广德, 鞠正春, 等. 宽幅播种条件下行距对小麦产量及干物质积累和转运的影响. 麦类作物学报, 2021, 41(2):232-237.
[5] 初金鹏, 朱文美, 尹立俊, 等. 宽幅播种对冬小麦‘泰农18’产量和氮素利用率的影响. 应用生态学报, 2018, 29(8):2517-2524.
[6] 孔令英, 赵俊晔, 于振文, 等. 宽幅播种条件下种植密度对小麦群体结构和光能利用率的影响. 麦类作物学报, 2020, 40(7):850-856.
[7] 周继泽, 欧行奇, 王永霞, 等. 河南省五大主导小麦品种适宜播量研究. 农学学报, 2019, 9(2):1-6.
[8] 赵竹, 曹承富, 乔玉强, 等. 机播条件下行距与密度对小麦产量和品质的影响. 麦类作物学报, 2011, 31(4):714-719.
[9] 刘小飞, 费良军, 段爱旺, 等. 调亏灌溉对冬小麦产量和品质及其关系的调控效应. 水土保持学报, 2019, 33(3):276-282,291.
[10] 刘芳亮, 张保军, 张正茂, 等. 播期和密度对普冰151小麦籽粒产量与品质的影响. 干旱地区农业研究, 2016, 34(6):1-7,14.
[11] 张赵星, 刘芳亮, 张保军, 等. 肥密互作对旱地冬小麦品种普冰151旗叶光合特性、产量及品质的影响. 麦类作物学报, 2016, 36(8):1069-1075.
[12] 郑健, 殷李高, 冯正江, 等. 沼液施用对设施土壤饱和导水率的影响. 节水灌溉, 2019(4):46-51,55.
[13] 秦红灵, 高旺盛, 马月存, 等. 两年免耕后深松对土壤水分的影响. 中国农业科学, 2008(1):78-85.
[14] 田欣, 孙敏, 高志强, 等. 播期播量对旱地小麦土壤水分消耗和植株氮素运转的影响. 应用生态学报, 2019, 30(10):3443-3451.
[15] 马瑞琦, 陶志强, 王德梅, 等. 追氮量对强筋和中筋小麦产量与品质的影响. 植物营养与肥料学报, 2019, 25(10):1799-1807.
[16] 张雪梅, 张玲, 高飞虎, 等. 不同分散温度、时间对双波长法测定大米中淀粉质量分数的影响研究. 西南大学学报(自然科学版), 2020, 42(4):49-55.
[17] Patanè C, Cosentino S L. Yield,water use and radiation use efficiencies of kenaf (Hibiscus cannabinus L.) under reduced water and nitrogen soil availability in a semi-arid Mediterranean area. European Journal of Agronomy, 2013, 46:53-62.
doi: 10.1016/j.eja.2012.12.002
[18] 崔浩浩, 张冰, 冯欣, 等. 不同土体构型土壤的持水性能. 干旱地区农业研究, 2016, 34(4):1-5.
[19] 刘增进, 李宝萍, 李远华, 等. 冬小麦水分利用效率与最优灌溉制度的研究. 农业工程学报, 2004(4):58-63.
[20] Dong Z, Zhang X, Li J, et al. Photosynthetic characteristics and grain yield of winter wheat (Triticum aestivum L.) in response to fertilizer,precipitation,and soil water storage before sowing under the ridge and furrow system:A path analysis. Agricultural and Forest Meteorology, 2019, 272:12-19.
[21] Sadras V O, Lawson C.Nitrogen and water-use efficiency of Australian wheat varieties released between 1958 and 2007. European Journal of Agronomy, 2013, 46:34-41.
doi: 10.1016/j.eja.2012.11.008
[22] Sepaskhah A R, Tafteh A. Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. Agricultural Water Management, 2012, 112:55-62.
doi: 10.1016/j.agwat.2012.06.005
[23] Ren A X, Sun M, Wang P R, et al. Optimization of sowing date and seeding density for high winter wheat yield based on pre-winter plant development and soil water usage in the Loess Plateau,China. Journal of Integrative Agriculture, 2019, 18(1):33-42.
doi: 10.1016/S2095-3119(18)61980-X
[24] 张礼军, 鲁清林, 汪恒兴, 等. 覆盖模式对不同类型旱地冬小麦土壤水温特征、籽粒品质和产量的影响. 西北农业学报, 2019, 28(6):888-897.
[25] 刘文国, 张建昌, 曹卫贤, 等. 旱地小麦不同栽培条件对土壤水分利用效率的影响. 西北农业学报, 2006, 15(5):47-51.
[26] 刘为健, 杨文稼, 王盈盈, 等. 2个小麦品种水分利用效率的差异及其与深层水分利用的关系. 水土保持学报, 2020, 34(3):245-251,258.
[27] 张秀, 朱文美, 董述鑫, 等. 灌水量与密度互作对冬小麦籽粒产量和水分利用效率的影响. 应用生态学报, 2021, 32(1):163-174.
[28] 朱文美, 费立伟, 代兴龙, 等. 雨养和灌水条件下种植密度对冬小麦产量、氮素利用率和水分利用效率的影响. 山东农业科学, 2018, 50(8):35-41.
[29] Ma S C, Wang T C, Guan X K, et al. Effect of sowing time and seeding density on yield components and water use efficiency of winter wheat by regulating the growth redundancy and physiological traits of root and shoot. Field Crops Research, 2018, 221:166-174.
doi: 10.1016/j.fcr.2018.02.028
[30] 田中伟, 王方瑞, 戴廷波, 等. 小麦品种改良过程中物质积累转运特性与产量的关系. 中国农业科学, 2012, 45(4):801-808.
[31] 张敏, 王岩岩, 蔡瑞国, 等. 播期推迟对冬小麦产量形成和籽粒品质的调控效应. 麦类作物学报, 2013, 33(2):325-330.
[32] 李晓航, 马华平. 不同播期和播量对冬小麦品种‘新麦29’产量形成的影响. 中国农学通报, 2019, 35(29):14-19.
[33] 张喜平, 宋建荣, 张耀辉, 等. 天选系列54份冬小麦新品系产量和品质性状评价及相关性分析. 甘肃农业科技, 2018(12):41-45.
[34] Tilley M S, Heiniger R W, Crozier C R. Tiller initiation and its effects on yield and yield components in winter wheat. Agronomy Journal, 2019, 111(3):1-10.
doi: 10.2134/agronj2018.10.0657
[35] 吴强, 张永平, 谢岷, 等. 节水灌溉模式下施肥量对小麦产量和加工品质的影响. 西北农林科技大学学报(自然科学版), 2021, 49(3):9-17.
[36] 郭瑞, 黄晓高, 温明星, 等. 追氮量和种植密度对春性强筋小麦镇麦12号籽粒产量和品质的影响. 核农学报, 2020, 34(8):1834-1839.
[37] 信志红, 郭建平, 谭凯炎, 等. 冬小麦籽粒品质评价及其对气象因子的响应研究. 中国生态农业学报, 2019, 27(8):1205-1217.
[38] 张礼军, 鲁清林, 白斌, 等. 施肥和地膜覆盖对黄土高原旱地冬小麦籽粒品质和产量的影响. 草业学报, 2019, 28(4):70-80.
[39] 张永强, 方辉, 陈传信, 等. 遮阴和种植密度对冬小麦灌浆特性及籽粒品质的影响. 中国农业大学学报, 2019, 24(5):10-19.
[40] 任爱霞, 任婕, 仝锦, 等. 播量对探墒沟播旱地小麦籽粒产量及品质的影响. 山西农业科学, 2020, 48(11):1791-1795,1800.
[41] 陈爱大, 蔡金华, 温明星, 等. 播期和种植密度对镇麦168籽粒产量与品质的调控效应. 江苏农业学报, 2014, 30(1):9-13.
[42] 孔令英, 赵俊晔, 骆兰平, 等. 宽幅播种条件下基本苗密度对小麦耗水特性和籽粒产量的影响. 山东农业科学, 2020, 52(4):27-31.
[43] 张兴娟, 薛绪掌, 郭文忠, 等. 有限供水下冬小麦全程耗水特征定量研究. 生态学报, 2014, 34(10):2567-2580.
[1] Wang Jian, Xu Ailing, Yang Na, Wang Ke, Xi Jilong, Wei Xiaodong, Zhang Jiancheng, Xi Tianyuan. Risk Assessment of Dry-Hot Wind in Different Sowing Dates of Wheat in Yuncheng Basin [J]. Crops, 2022, 38(2): 104-112.
[2] Zhou Yuzhuang, Wang Rui, Yao Zhaosheng, Zhang Weijun, Liu Tao, Sun Chengming. Effects of Different Soil Surface Structures on Wheat Growth, Development and Yield [J]. Crops, 2022, 38(2): 127-133.
[3] Ma Ruiqi, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Topdressing Nitrogen Rates on Yield and Photosynthetic Performance of Different Quality Types of Wheat [J]. Crops, 2022, 38(2): 134-142.
[4] Cao Liru, Lu Xiaomin, Wang Guorui, Dang Zun, Qiu Tian, Qiu Jianjun, Tian Yunfeng, Wang Zhenhua, Dang Yongfu. Effects of Foliar Spraying with Carbon-Adsorbed Polyglutamic Acid on Growth and Development of Maize [J]. Crops, 2022, 38(2): 158-166.
[5] Yuan Jingya, Li Wanming, Pang Xueqin, Huang Linhua, Qi Lan, Wang Shengmou, Xie Zhengwei, Qiu Yibiao, Lai Quanhao, Qin Nana. Effects of Different Top Pruning Layers at Flowering Stage on Agronomic Traits and Yield of Broad Bean [J]. Crops, 2022, 38(2): 167-173.
[6] Liu Panfeng, Qin Jie, Hao Shuangnan, Wang Danli, Yang Wude, Feng Meichen, Song Xiaoyan. Effects of Selenium Concentration, Application Stage and Method on Yield and Grain Selenium Content of Different Millet Varieties [J]. Crops, 2022, 38(2): 182-188.
[7] Guo Yongxin, Zhou Hao, Sun Peng, Wang Yaqing, Ma Ke, Li Xiaorui, Dong Shuqi, Guo Pingyi, Yuan Xiangyang. Effects of Planting Patterns on Lodging Resistance and Yield of Zhangza 10 in Different Ecological Areas [J]. Crops, 2022, 38(2): 195-202.
[8] Li Feng, Gao Tongmei, Su Xiaoyu, Wei Libin, Wang Dongyong, Tian Yuan, Li Tongke, Yang Zihao, Wei Shuangling. Effects of Nitrogen Rate and Planting Density on Photosynthetic Rate, Yield, Nitrogen Use Efficiency of Sesame [J]. Crops, 2022, 38(2): 215-221.
[9] Han Lijun, Xue Zhangyi, Xie Hao, Gu Junfei. Effects of Dry-Wet Alternate Irrigation and Nitrification Inhibitor on Rice Yield and Soil Properties [J]. Crops, 2022, 38(2): 222-229.
[10] Gong Dan, Luo Gaoling, Zhang Xiaoyan, Zhu Xu, Yin Zhengong, Wang Suhua, Sha Aihua, Wang Lixia. Assessment of Adaptability for 34 New Cultivars of Cowpea under Different Eco-Environments [J]. Crops, 2022, 38(2): 89-95.
[11] Fang Mengying, Yan Peng, Lu Lin, Wang Qingyan, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium on Nitrogen Metabolism and Yield of Summer Maize under Different Nitrogen Levels [J]. Crops, 2022, 38(2): 96-103.
[12] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[13] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[14] He Yuxuan, Li Yajuan, Zhou Mingzhuo, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System [J]. Crops, 2022, 38(1): 116-123.
[15] Cui Shiyou, Zhang Yang, Zhai Caijiao, Dong Shiqi, Zhang Jiao, Chen Pengjun, Han Jijun, Dai Qigen. Performance of Yield and Quality of Japonica Rice under Brackish Water Irrigation on the Reclaimed Tidal Flat [J]. Crops, 2022, 38(1): 137-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!