Crops ›› 2023, Vol. 39 ›› Issue (2): 163-170.doi: 10.16035/j.issn.1001-7283.2023.02.024

Previous Articles     Next Articles

Effects of Cannabidiol on Tobacco Growth under Cd and Cr Stress

Guan Jiao(), Fan Xingrong, Zou Hongxu, Yang Jialing, Wang Lihua, Weng Yuxian, Bao Zhijuan()   

  1. College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2022-02-17 Revised:2022-07-28 Online:2023-04-15 Published:2023-04-11

Abstract:

This work was conducted to explore the effects of cannabidiol (CBD) on the growth and development of tobacco under heavy metal stress. Using tobacco variety K326 as material, the CBD solutions of four different concentrations (0.0, 1.0, 5.0, 25.0mg/L) were sprayed on the leaf surface in Cd-stressed and Cr-stressed tobacco plants, respectively. The biomass, Cd and Cr accumulation of tobacco plants, and antioxidant indexes in leaves were determined after treatments. The results showed that, Cd and Cr stress seriously inhibited the growth of tobacco and increased the accumulation of Cd and Cr in plants. Exogenous CBD appeared low concentrations promotion and high concentration inhibition on tobacco growth. The application of 1.0mg/L (Cd) and 5.0mg/L (Cr) CBD significantly reduced the production rate of O2-· and H2O2 in tobacco leaves, Cd and Cr contents in plants, while remarkably increased the shoot and root dry weight of tobacco, the activities of superoxide dismutase, peroxidase, polyphenol oxidase, ascorbic acid peroxidase and glutathione reductase, and improved the contents of ascorbic acid (AsA) and glutathione (GSH), as well as AsA/DHA (dehydroascorbate) and GSH/ GSSG (oxidized glutathione). In conclusion, an appropriate amount of exogenous CBD could effectively alleviate the oxidative damage caused by heavy metal stress, inhibit the accumulation of heavy metals in tobacco plants and promote plants growth.

Key words: Cannabidiol, Heavy metal stress, Nicotiana tabacum L., Antioxidation, AsA-GSH cycle

Table 1

Effects of CBD on tobacco biomass under Cd and Cr stress"

重金属
Heavy metal
(mg/kg)
CBD浓度
CBD concentration
(mg/L)
干重(g/株)Dry weight (g/plant) 耐受系数Tolerance coefficient
地上部分
Upper ground
地下部分
Under ground
地上部分
Upper ground
地下部分
Under ground
CK 51.47±0.82a 7.62±0.38a ? ?
Cd (60) 0.0 41.00±1.17c 5.47±0.44c 0.80±0.03b 0.72±0.09b
1.0 46.71±1.02b 7.20±0.46a 0.91±0.02a 0.94±0.06a
5.0 42.81±1.18c 7.04±0.62ab 0.83±0.01b 0.92±0.08a
25.0 41.91±1.05c 6.18±1.05bc 0.81±0.03b 0.81±0.10ab
Cr (90) 0.0 37.68±0.68d 5.84±0.24b 0.73±0.00c 0.77±0.01b
1.0 39.47±0.78c 6.32±0.28b 0.77±0.01b 0.83±0.04b
5.0 45.96±0.48b 7.36±0.28a 0.89±0.02a 0.97±0.06a
25.0 38.11±0.69d 6.47±0.45b 0.74±0.00c 0.85±0.06b

Table 2

Effects of CBD on Cd and Cr absorption of tobacco under Cd and Cr stress"

重金属
Heavy
mental
(mg/kg)
CBD浓度
CBD
concentration
(mg/L)
Cd或Cr含量
Content of Cd or Cr (mg/kg DW)
富集系数
Bioaccumulation factor
Cd/Cr
TF
Cd或Cr单株积累量
Cd or Cr accumulation
per plant (mg)
地上部分
Upper ground
地下部分
Under ground
地上部分
Upper ground
地下部分
Under ground
CK 0.86±0.03c 1.68±0.06d ? ? 0.51±0.01c 0.15±0.08d
Cd (60) 0.0 45.41±1.39a 18.18±0.30a 0.750±0.02a 0.300±0.00a 2.50±0.11b 2.96±0.14a
1.0 38.24±0.79b 12.76±0.33c 0.630±0.01b 0.210±0.01c 3.00±0.14a 2.75±0.05b
5.0 37.92±1.22b 13.10±0.10c 0.630±0.02b 0.220±0.00c 2.89±0.07a 2.54±0.03c
25.0 38.30±2.06b 15.93±0.21b 0.640±0.03b 0.260±0.00b 2.41±0.13b 2.61±0.05c
CK 1.40±0.06d 16.49±0.31e ? ? 0.08±0.00b 1.06±0.00d
Cr (90) 0.0 2.30±0.10a 42.71±1.33a 0.013±0.00a 0.250±0.01a 0.05±0.00d 1.96±0.06a
1.0 1.79±0.05c 26.76±0.41c 0.010±0.00c 0.150±0.00c 0.07±0.00c 1.31±0.04c
5.0 2.08±0.11b 22.33±0.76d 0.012±0.00b 0.130±0.00d 0.09±0.01a 1.30±0.04c
25.0 2.15±0.09ab 32.94±0.38b 0.012±0.00b 0.190±0.00b 0.07±0.00c 1.56±0.03b

Fig.1

Effects of CBD on O2-· production rate, H2O2 and MDA contents in tobacco leaves under Cd and Cr stress Different lowercase letters indicate significant difference (P < 0.05) between treatments, the same below"

Fig.2

Effects of CBD on antioxidant enzyme activities in tobacco leaves under Cd and Cr stress"

Fig.3

Effects of CBD on AsA, AsA/DHA, GSH and GSH/GSSG in tobacco leaves under Cd and Cr stress"

Fig.4

Effects of CBD on APX and GR activity of tobacco leaves under Cd and Cr stress"

Table 3

Correlation coefficient between CBD concentration and indexes of tobacco leaves oxidation system, Cd and Cr accumulation"

重金属
Heavy metal
SOD POD PPO AsA GSH H2O2 O2-· MDA Cd或Cr积累量
Cd or Cr accumulation amount
Cd -0.267 -0.602* -0.619* -0.304 -0.410 0.699* 0.831** 0.283 -0.500
Cr -0.221 -0.430 -0.379 -0.164 0.335 -0.876** -0.199 0.795 ** -0.055

Fig.5

Correlation analysis between antioxidant index and membrane lipid peroxidation index of tobacco leaves, Cd and Cr accumulation under Cd (a) and Cr (b) stress “**”shows significant correlation at the 0.01 level;“*”shows significant correlation at the 0.05 level"

[1] Arora N K, Chauhan R. Heavy metal toxicity and sustainable interventions for their decontamination. Environmental Sustainability, 2021, 4(1):1-3.
doi: 10.1007/s42398-021-00164-y
[2] 张星雨, 叶志彪, 张余洋. 植物响应镉胁迫的生理与分子机制研究进展. 植物生理学报, 2021, 57(7):1437-1450.
[3] Muhammad A F, Faisal I, Yang C, et al. Methyl jasmonate alleviates arsenicinduced oxidative damage and modulates the ascorbate-glutathione cycle in oilseed rape roots. Plant Growth Regulation, 2018, 84(1):135-148.
doi: 10.1007/s10725-017-0327-7
[4] 杜昕, 李博, 毛鲁枭, 等. 褪黑素对干旱胁迫下大豆产量及AsA- GSH循环的影响. 作物杂志, 2022(1):174-178.
[5] 史广宇, 余志强, 施维林, 等. 植物修复土壤重金属污染中外源物质的影响机制和应用研究进展. 生态环境学报, 2021, 30 (3):655-666.
doi: 10.16258/j.cnki.1674-5906.2021.03.024
[6] 翁蔚, 张琴梅, 李书魁, 等. 植物多酚抗病毒功效及机制研究进展. 中华中医药杂志, 2020, 35(12):6236-6240.
[7] 司廉邦, 李嘉敏, 黎桂英, 等. 茶多酚对盐胁迫下小麦幼苗叶片生理特性的影响. 生态学报, 2020, 40(11):3747-3755.
[8] 耿志刚, 韩西红, 赵丽丽, 等. 褐藻多酚对铅胁迫下上海青生长及抗氧化系统的影响. 热带农业工程, 2020, 44(6):82-87.
[9] 宋佳倩, 徐亮, 王悦霖, 等. 外源添加麝香草酚提高烟草幼苗抵御盐胁迫机理的研究. 中国烟草学报, 2021, 27(2):65-71.
[10] Andrea F, Alessandra F, Giulia S, et al. Bioaugmented phytoremediation of metal-contaminated soils and sediments by hemp and giant Reed. Frontiers in Microbiology, 2021, 12:645893.
doi: 10.3389/fmicb.2021.645893
[11] Muanpetch R, Ketsupar J, Pimpayao S, et al. In vitro effects of cannabidiol on activated immune-inflammatory pathways in major depressive patients and healthy controls. Pharmaceuticals, 2022, 15(4):405.
doi: 10.3390/ph15040405
[12] Tabrez S, Matthew J L, Danielle D, et al. The potential role of cannabinoids in dermatology. The Journal of Dermatological Treatment, 2019, 31(8):1471-1753.
[13] Maria V R, Arturo I F, Pietro A. The (poly) pharmacology of cannabidiol in neurological and neuropsychiatric disorders:molecular mechanisms and targets. International Journal of Molecular Sciences, 2021, 22(9):4876-4876.
doi: 10.3390/ijms22094876
[14] Lorena R C C, Sandra K R, Nick H, et al. The anti-inflammatory effects of cannabidiol and cannabigerol alone,and in combination. Pulmonary Pharmacology & Therapeutics, 2021, 69:102047.
[15] 赵明香, 朱永立, 向蓉蓉, 等. 外源水杨酸对镉锌胁迫下烤烟生长及抗氧化特性的影响. 西北农林科技大学学报(自然科学版), 2020, 48(2):34-41.
[16] 李忠光, 龚明. 植物生理学综合性和设计性实验教程. 武汉: 华中科技大学出版社, 2014.
[17] 宋雅娟, 李师翁. 油菜素内酯缓解植物重金属胁迫机制的研究. 环境科学与技术, 2021, 44(8):39-46.
[18] Jan S, Alyemeni M N, Wijaya L, et al. Interactive effect of 24- epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biology, 2018, 18(1):1-18.
[19] 贾茵, 刘才磊, 兰晓悦, 等. 外源水杨酸对镉胁迫下小报春幼苗生长及生理特性的影响. 草地学报, 2020, 28(5):1346-1354.
doi: 10.11733/j.issn.1007-0435.2020.05.020
[20] 张盛楠, 黄益宗, 李颜, 等. Cd胁迫下不同外源植物激素对水稻幼苗抗氧化系统及Cd吸收积累的影响. 环境科学, 2021, 42(4):2040-2046.
[21] 刘梓清, 杨继刚, 吴子涵, 等. 植物根系限制重(类)金属吸收/转运的因素及其机制. 农业现代化研究, 2021, 42(2):284-293.
[22] 邢淑萍, 陈保冬, 郝志鹏, 等. 根际微生物增强宿主植物耐铬能力生理机制研究进展. 生态毒理学报, 2021, 16(1):2-14.
[23] 蔡仕珍, 龙聪颖, 邓辉茗, 等. 外源SA、GSH对Cd胁迫下绵毛水苏生理和生长的影响. 核农学报, 2021, 35(1):211-220.
doi: 10.11869/j.issn.100-8551.2021.01.0211
[24] 王明瑶, 曹亮, 于奇, 等. 褪黑素浸种对盐碱胁迫下大豆种子萌发的影响. 作物杂志, 2019(6):195-202.
[25] Péter P, Gábor P, Zoltán T, et al. Salicylic acid-induced ROS production by mitochondrial electron transport chain depends on the activity of mitochondrial hexokinases in tomato (Solanum lycopersicum L.). Journal of Plant Research, 2019, 132(2):273-283.
doi: 10.1007/s10265-019-01085-y pmid: 30758749
[26] Muhammad N, Zvobgo G, Fu L B, et al. Physiological mechanisms for antagonistic interaction of manganese and aluminum in barley. Journal of Plant Nutrition, 2019, 42(5):466-476.
doi: 10.1080/01904167.2019.1567767
[27] 闵强, 柯汉玲, 祖艳群, 等. 连续2年土壤砷胁迫对三七(Panax notoginseng)细胞膜透性和抗氧化酶活性的影响. 云南农业大学学报(自然科学), 2016, 31(4):767-771.
[28] 王赫, 黄辉. 茶多酚对铬胁迫玉米幼苗的修复作用. 天津科技, 2016, 43(2):43-48.
[29] Mumtaz K, Daud M K, Ali B, et al. Alleviation of lead-induced physiological,metabolic and ultramorphological changes in leaves of upland cotton through glutathione. Environmental Science and Pollution Research, 2016, 23(9):8431-8440.
doi: 10.1007/s11356-015-5959-4
[30] Qin S Y, Liu H G, Nie Z J, et al. AsA-GSH cycle and antioxidant enzymes play important roles in Cd tolerance of wheat. Bulletin of Environmental Contamination and Toxicology, 2018, 101(5):684-690.
doi: 10.1007/s00128-018-2471-9 pmid: 30353306
[31] Yuan H Y, Guo Z, Liu Q Q, et al. Exogenous glutathione increased lead uptake and accumulation in Iris lactea var. chinensis exposed to excess lead. International Journal of Phytoremediation, 2018, 20(11):1136-1143.
doi: 10.1080/15226514.2018.1460307
[32] Mohamed A F, Mohammad R G, Peter C R. Cannabidiol protects against high glucose-induced oxidative stress and cytotoxicity in cardiac voltage-gated sodium channel. British Journal of Pharmacology, 2020, 177(13):2932-2946.
doi: 10.1111/bph.15020 pmid: 32077098
[33] 徐兴阳, 罗华元, 闫辉, 等. 不同烟草品种对6种重金属抗性能力初评. 云南省烟草学会2014年学术年会优秀论文集, 昆明: 云南省烟草学会, 2015:312-323.
[1] Wang Hanxiang, Li Guangcun, Xu Jianfei, Wang Wanxing, Jin Liping. Advances in Research on Salt Tolerance Mechanism of Plants [J]. Crops, 2022, 38(5): 1-12.
[2] Du Xin, Li Bo, Mao Luxiao, Chen Wei, Zhang Yuxian, Cao Liang. Effects of Melatonin on Yield and AsA-GSH Cycle in Soybean under Drought Stress [J]. Crops, 2022, 38(1): 174-178.
[3] Liu Jianxia,Bai Zezhen,Wang Runmei,Liu Lizhen,Zhang Zhenhua,Wen Riyu. Germination Characteristics and Accumulation Effects of Adzuki Bean under Heavy Metal Stress [J]. Crops, 2019, 35(6): 182-186.
[4] . [J]. Crops, 2013, 29(3): 45-48.
[5] . [J]. Crops, 2013, 29(3): 141-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!