Crops ›› 2023, Vol. 39 ›› Issue (5): 71-80.doi: 10.16035/j.issn.1001-7283.2023.05.011

Previous Articles     Next Articles

Cloning and Analysis of the Structure and Function of the Key Enzyme Genes StGOGATs of Potato Nitrogen Assimilation

Han Zhijun1(), Zhao Yanfei1, Lu Yue1, Li Shuang2, Zhang Jiayue1, Han Yuzhu1(), Zhang Jingying1()   

  1. 1College of Horticulture, Jilin Agricultural University, Changchun 130118, Jilin, China
    2Teaching and Research Base Management Office, Jilin Agricultural University, Changchun 130118, Jilin, China
  • Received:2022-04-12 Revised:2023-07-17 Online:2023-10-15 Published:2023-10-16

Abstract:

Two glutamate synthase genes (StFd-GOGAT, StNADH-GOGAT) were cloned and their structures and functions were analyzed using potato cultivar Chunshu 4. The results showed that the StFd- GOGAT and StNADH-GOGAT consisted of 1622 and 2210 amino acids, respectively, with protein molecular weights of 176.106 and 242.021kDa, respectively. Prediction showed that StGOGATs were stable and hydrophilic proteins. Analysis of their protein domains showed that StGOGATs proteins belonged to the gltB family in the first 1700 amino acid positions, which played a role in nitrogen metabolism and could catalyze the conversion of amide nitrogen from glutamine. It was hydrolyzed into glutamic acid and ammonia and transferred to suitable substrates. Gene mapping showed that StGOGATs were located in the first 850kb of potato chromosome 3. Promoter cis-acting element analysis of StGOGATs showed that they were related to plant photosynthesis and the synthesis of nitrogen compounds. It was found that they had a high homology with Solanum lycopersicum and Solanum pennellii by constructing a phylogenetic tree. The protein interaction prediction showed that there was a direct interaction between StFd-GOGAT and StNADH-GOGAT. The tertiary structure prediction showed that only StNADH-GOGAT had its own homodimer structure. Subcellular localization speculated that StFd-GOGAT and StNADH-GOGAT function in the cytoplasm and chloroplast, respectively. The properties, structure and function of StGOGATs were preliminarily clarified, laying a theoretical foundation for the subsequent exploration of their molecular regulation mechanism in the GS/GOGAT cycle.

Key words: GS/GOGAT cycle, StGOGATs, Protein structure, Protein interaction, Promoter

Table 1

Primer sequence"

引物名称Primer name 引物序列Primer sequence
StFd-GOGAT F ATGGCGGTGAATTCCGTGGC
StFd-GOGAT R TTATTTTAATGGCATCTCTGCAGACTG
StNADH-GOGAT F GTGGTGGTGTTGCCTATGTTCTTGA
StNADH-GOGAT R TTGTGTTACGCTGGTGTTGCTGTAT

Table 2

Online analysis software name and website"

工具Tool 网址/软件URL/Software 功能Function
ProtParam http://web.expasy.org/protparam/ 蛋白理化性质分析
ProtScale https://web.expasy.org/protscale/ 蛋白亲疏水性分析
TMHMM 2.0 http://www.cbs.dtu.dk/services/TMHMM/ 氨基酸跨膜结构预测
SignalP 5.0 http://www.cbs.dtu.dk/services/SignalP/ 信号肽预测
NetPhos 3.1 http://www.cbs.dtu.dk/services/NetPhos/ 磷酸化位点预测
InterProScan http://www.ebi.ac.uk/interpro/search/sequence/ 蛋白结构域预测
CD-Search https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi 保守结构域搜索
SOPMA https://npsa-prabi.ibcp.fr/NPSA/npsa_sopma.html 蛋白二级结构预测
SWISS-MODEL https://swissmodel.expasy.org/interactive 蛋白三级结构预测
PSORT Ⅱ https://psort.hgc.jp/form2.html 亚细胞定位预测
Cytoscape https://cytoscape.org/ 蛋白互作预测
MG2C http://mg2c.iask.in/mg2c_v2.1/ 染色体定位查看
Plant CARE http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ 启动子元件预测
MEGA 7.0 https://www.megasoftware.net/ 系统进化树构建

Fig.1

StFd-GOGAT cloning vector bacterial liquid PCR verification M: DL15000; 1: negative control; 2: positive control; 3-8: StFd- GOGAT bacterial solution"

Fig.2

PCR verification for StNADH-GOGAT cloning vector bacterial liquid M: DL15000; 1: positive control; 2: negative control; 3-5: StNADH- GOGAT bacterial solution"

Table 3

Analysis of physicochemical properties of StGOGATs protein"

名称
Name
氨基酸
数量
Number of
amino acids
分子量
Molecular
weight
(kDa)
理论等电点
Theoretical
isoelectric
point
原子数
Atomic
number
不稳定
系数
Instability
factor
脂肪
指数
Fat
index
亲水性平均值
Average
hydro philicity
(GRAVY)
负电荷残基
Negatively
charged residues
(Asp+Glu)
正电荷残基
Positively
charged residues
(Arg+Lys)
StFd-GOGAT 1622 177.106 6.20 24891 39.78 89.86 -0.167 184 171
StNADH-GOGAT 2210 242.021 6.42 34005 37.34 84.05 -0.279 280 265

Fig.3

Analysis of StGOGATs amino acid composition"

Fig.4

Hydrophilic and hydrophobic analysis of StGOGATs protein"

Fig.5

Prediction of the amino acid transmembrane structure of StGOGATs"

Fig.6

StGOGATs protein signal peptide prediction"

Fig.7

Prediction of potential phosphorylation sites of StGOGATs amino acid residues"

Fig.8

StGOGATs protein domain prediction"

Fig.9

Prediction of the secondary structure of StGOGATs protein"

Fig.10

The proportion of the secondary structural elements of StGOGATs protein"

Fig.11

Prediction of the tertiary structure of StGOGATs protein"

Fig.12

Prediction of StNADH-GOGAT protein homodimer structure"

Fig.13

StGOGATs protein mutual production network"

Fig.14

StGOGATs chromosomal location map"

Table 4

Table of cis-acting elements of StGOGATs promoter"

元件
Element
功能
Function
数量Number
StFd-GOGAT StNADH-GOGAT
TGACG-motif 参与MeJA反应的顺式调节元件 1 8
CGTCA-motif 参与MeJA反应的顺式调节元件 1 8
TC-rich repeats 参与防御和压力反应的顺式作用元件 2 0
Box 4 参与光反应的保守DNA模块的一部分 1 0
G-Box 参与光反应的顺式调节元件 1 11
GCN4-motif 参与胚乳表达的顺式调节元件 0 3
ABRE 参与脱落酸反应的顺式作用元件 1 8
O2-site 参与玉米醇溶蛋白代谢调节的顺式调节元件 2 0
P-box 赤霉素反应元件 3 2
TGA-element 生长素反应元件 1 1
AuxRR-core 参与生长素反应的顺式调节元件 0 1
AuxRE 生长素反应元件的一部分 0 1
AE-box 光响应模块的一部分 0 3
GT1-motif 光响应元件 2 2
LAMP-element 光响应元件的一部分 1 0
I-box 光响应元件的一部分 2 0
TCT-motif 光响应元件的一部分 1 2
GATA-motif 光响应元件的一部分 0 2
TCCC-motif 光响应元件的一部分 0 1
GTGGC-motif 光响应元件的一部分 1 0
circadian 参与昼夜节律控制的顺式调节元件 1 0
CAT-box 与分生组织表达相关的顺式调节元件 2 4
MSA-like 参与细胞周期调控的顺式作用元件 0 1
ARE 厌氧诱导所必需的顺式调节元件 2 7
MBS 与干旱诱导有关的MYB结合位点 5 5
TCA-element 与水杨酸反应有关的顺式作用元件 0 4
CCAAT-box MYBHv1结合位点 1 1
MRE 参与光反应的MYB结合位点 1 0
AT-rich element 富含AT的DNA结合蛋白(ATBP-1)结合位点 1 1
HD-Zip 1 参与栅栏叶肉细胞分化的元素 1 0

Fig.15

Cis-acting elements of StGOGATs promoter"

Fig.16

StGOGATs phylogenetic tree"

[1] 郝凯, 贾立国, 秦永林, 等. 氮素对马铃薯源-库关系影响研究进展. 作物杂志, 2020(3):22-26.
[2] 张静, 蒙美莲, 王颖慧, 等. 氮磷钾施用量对马铃薯产量及品质的影响. 作物杂志, 2012(4):124-127.
[3] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany, 2010, 105(7):1141-1157.
doi: 10.1093/aob/mcq028 pmid: 20299346
[4] McAllister C H, Beatty P H, Good A G. Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnology Journal, 2012, 10(9):1011-1025.
doi: 10.1111/j.1467-7652.2012.00700.x pmid: 22607381
[5] 刘秀杰, 宫占元. 植物氮素吸收利用研究进展. 现代化农业, 2012(8):20-21.
[6] 马雪峰, 高旻, 程治军. 植物氮素吸收与利用的分子机制研究进展. 作物杂志, 2013(4):32-38.
[7] 张婷婷, 孟丽丽, 陈有君, 等. 不同马铃薯品种的氮效率差异研究. 中国土壤与肥料, 2021(1):63-69.
[8] Fontaine J X, Tercélaforgue T, Armengaud P, et al. Characterization of a NADH-Dependent glutamate dehydrogenase mutant of demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. Bulletin of the American Physical Society, 2014.
[9] 张华珍, 徐恒玉. 植物氮素同化过程中相关酶的研究进展. 北方园艺, 2011(20):180-183.
[10] 牛超, 刘关君, 曲春浦, 等. 谷氨酸合成酶基因及其在植物氮代谢中的调节作用综述. 江苏农业科学, 2018, 46(9):10-16.
[11] Konishi N, Ishiyama K, Matsuoka K, et al. NADH-dependent glutamate synthase plays a crucial role in assimilating ammonium in the Arabidopsis root. Physiologia Plantarum, 2014, 152(1):138-151.
doi: 10.1111/ppl.12177
[12] 朱静, 岳思宁, 陈琛, 等. 谷氨酸合酶在灵芝中生物学功能的研究. 南京农业大学学报, 2019, 42(6):1073-1079.
[13] 陈丽华, 刘丽君, 刘页丽, 等. 不同基因型大豆Fd-GOGAT基因cDNA序列的克隆与分析. 大豆科学, 2011, 30(3):374-378.
[14] 陈阳, 孙华山, 王玉书, 等. 草地早熟禾NADH-GOGAT基因的克隆及表达分析. 草地学报, 2019, 27(2):459-465.
doi: 10.11733/j.issn.1007-0435.2019.02.026
[15] 张云, 赵艳菲, 王雅平, 等. 延薯4号马铃薯对氮素的生理生化响应及转录组分析. 广东农业科学, 2021, 48(2):56-66.
[16] 赵艳菲, 张嘉越, 韩玉珠. 马铃薯氮代谢途径中Fd-GOGAT基因的克隆及生物信息学分析//中国作物学会马铃薯专业委员会,马铃薯产业与美丽乡村(2020). 哈尔滨: 黑龙江科学技术出版社, 2020.
[17] Kishorekumar R, Bulle M, Wany A, et al. An overview of important enzymes involved in nitrogen assimilation of plants. Methods in Molecular Biology, 2020, 2057:1-13.
doi: 10.1007/978-1-4939-9790-9_1 pmid: 31595465
[18] Bernard S M, Habash D Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist, 2009, 182(3):608-620.
doi: 10.1111/j.1469-8137.2009.02823.x pmid: 19422547
[19] 黄成能. N胁迫对柑橘营养生长及GS/GOGAT循环酶基因表达影响的研究. 长沙:湖南农业大学, 2014.
[20] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 1998, 16(6):735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[21] Feraud M, Masclaux-Daubresse C, Ferrario-Méry S, et al. Expression of a ferredoxin-dependent glutamate synthase gene in mesophyll and vascular cells and functions of the enzyme in ammonium assimilation in Nicotiana tabacum (L.). Planta, 2005, 222(4):667-677.
doi: 10.1007/s00425-005-0013-2
[22] Lea P J, Miflin B J. Alternative route for nitrogen assimilation in higher plants. Nature, 1974, 251(5476):614-616.
doi: 10.1038/251614a0
[23] Wallsgrove R M, Lea P J, Miflin B J. Distribution of the enzymes of nitrogen assimilation within the pea leaf cell. Plant Physiology, 1979, 63(2):232-236.
doi: 10.1104/pp.63.2.232 pmid: 16660703
[24] Becker T W, Carrayol E, Hirel B. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization,relative proportion and their role in ammonium assimilation or nitrogen transport. Planta, 2000, 211(6):800-806.
pmid: 11144264
[25] Loulakakis K A, Primikirios N I, Nikolantonakis M A, et al. Immunocharacterization of Vitis vinifera L. ferredoxin-dependent glutamate synthase,and its spatial and temporal changes during leaf development. Planta, 2002, 215(4):630-638.
doi: 10.1007/s00425-002-0785-6
[26] Zeng D D, Qin R, Li M, et al. The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Molecular Genetics and Genomics, 2017, 292(2):385-395.
doi: 10.1007/s00438-016-1275-z
[27] 张翼飞. 施氮对甜菜氮素同化与碳代谢的调控机制研究. 哈尔滨:东北农业大学, 2013.
[28] 侯昕, 徐新翔, 贾志航, 等. 供氮水平对苹果砧木‘M9T337’幼苗生长和GSGOGATAS基因表达的影响. 园艺学报, 2019, 46(11):2239-2248.
doi: 10.16420/j.issn.0513-353x.2018-1010
[29] Yamaya T, Obara M, Nakajima H, et al. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. Journal of Experimental Botany, 2002, 53:917-925.
doi: 10.1093/jexbot/53.370.917 pmid: 11912234
[1] Cao Liru, Wang Guorui, Zhang Xin, Wei Liangming, Wei Xin, Zhang Qianjin, Deng Yazhou, Wang Zhenhua, Lu Xiaomin. Genome-Wide Identification and Analysis of HSP90 Gene Family in Maize [J]. Crops, 2021, 37(5): 28-34.
[2] Wang Li, Wang Zuoping, Zhang Zhongbao, Bai Ling, Wu Zhongyi. Screening of Strongly Expressed Promoters in Immature Maize Kernels [J]. Crops, 2020, 36(4): 114-120.
[3] Li Yan,Qiang Yang,Yupeng Shao,Dandan Li,Zhikun Wang,Wenbin Li. Cloning and Sequence Analysis of GmWRI1a Gene Promoter in Soybean [J]. Crops, 2017, 33(2): 51-58.
[4] Liu Jianwei, Chen Xiaofeng, Liu Guangfu, Guo Zongduan, Li Xinzhu, Hu Zhaoping, Zhang liang. Cloning and Expression Analysis of CYP78A5,a Tissue-specific Promoter in Soybean [J]. Crops, 2014, 30(1): 54-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!