Crops ›› 2023, Vol. 39 ›› Issue (5): 66-70.doi: 10.16035/j.issn.1001-7283.2023.05.010

Previous Articles     Next Articles

Study on Genetic and Breeding Effects of 100-Grain Weight in Maize

Qu Haitao1(), Li Zhongnan2, Wang Yueren1, Ma Yiwen1, Xiang Yang2, Wu Shenghui1, Tan Zhuo3, Wang Chun3, Wei Qiang3, Luo Yao1, Li Guangfa1()   

  1. 1Tonghua Academy of Agricultural Sciences, Meihekou 135007, Jilin, China
    2Agricultural and Technology Extension Station of Jilin Province, Changchun 130033, Jilin, China
    3Tonghua Seed Management Station, Tonghua 134000, Jilin, China
  • Received:2022-03-18 Revised:2022-05-12 Online:2023-10-15 Published:2023-10-16

Abstract:

Under the condition of self-pollination, the differences of 100-grain weight of PH6WC×PH4CV, PH6WC×B20, PH6WC×D1279 and their parents were analyzed, and the six-generation populations (P1, P2, F1, B1, B2, F2) of PH6WC× D1279 were established, the genetic analysis of 100-grain weight was carried out by using the genetic analysis method of major gene polygene mixed model. The results showed that there were extremely significant differences in 100-grain weight among F1 of three hybrids and extremely significantly higher than those of their parents. The super high parental heterosis of F1 were 11.56%-43.68%; the genetic model of 100-grain weight was two pairs of major genes additive, dominance, epistasis model, and two pairs of major genes were completely dominant, epistatic effect > dominant effect > additive effect, the major gene heritabilities were 77.64%-80.86%.

Key words: Maize, 100-grain weight, F1 super high parental heterosis, Genetic breeding

Table 1

Consanguinity and corresponding varieties of inbred lines"

自交系Inbred line 血缘系谱Consanguinity 来源Source 组合Combination 品种Variety
PH6WC PH01N×PH09B Reid,美国 PH6WC×PH4CV 先玉335(国审玉2004017)
PH4CV PH7V0×PHBE2 Lancaster,美国
B20 丹340×吉853 旅系×黄早四,中国(自育) PH6WC×B20 津单19(津审玉2010005)
D1279 B20×PH4CV DH系,中国(自育) PH6WC×D1279 通育189(蒙审玉2020014)

Table 2

Variance analysis of 100-grain weight"

变异来源Source of variation 平方和Sum of squares 自由度Free degree 均方Mean square FF value PP value
区组间Between groups 0.26 2 0.13 0.33 0.7259
材料间Between materials 1118.75 6 186.46 472.05 0
误差Error 4.74 12 0.40
总变异Total variation 1123.75 20

Table 3

Significance differences and F1 average heterosis and super high parental heterosis of 100-grain weight in materials"

材料
Material
平均值
Mean
(g)
平均优势
Average
heterosis (%)
超高亲优势
Super high parental
heterosis (%)
PH6WC×B20 46.53aA 51.56 39.02
PH6WC×D1279 44.70bB 31.47 11.56
PH6WC×PH4CV 40.13cC 47.27 43.68
D1279 40.07cC 33.48 19.72
B20 33.47dD
PH6WC 27.93eE
PH4CV 26.57fE

Table 4

Statistical parameters of 100-grain weight in the six generation"

世代
Generation
平均值
Mean (g)
最大值
Maximum (g)
最小值
Minimum (g)
标准差
Standard deviation
标准误
Standard error
变异系数
Coefficient of variation (%)
JB
P
P1 31.76 36.50 25.30 2.7372 0.4765 8.62 0.5570
P2 41.86 47.60 36.50 2.4435 0.3078 5.84 0.4119
F1 45.07 52.40 34.70 4.0066 0.4398 8.89 0.3495
B1 39.05 51.60 26.40 4.4143 0.2360 11.30 0.9900
B2 41.15 55.90 24.50 5.4332 0.3116 13.20 0.0334
F2 39.76 55.30 21.60 5.4468 0.2233 13.70 0.0616

Table 5

The AIC value for 100-grain weight of 21 genetic models in the six generations"

模型
Model
AIC
AIC value
模型
Model
AIC
AIC value
1MG-AD 34 105.77 MX1-AD-AD 32 690.71
1MG-A 34 399.93 MX1-A-AD 33 467.04
2MG-ADI 30 585.33 MX1-EAD-AD 33 735.01
2MG-AD 30 605.51 MX1-AEND-AD 33 729.25
2MG-A 30 644.22 MX2-ADI-ADI 31 230.06
2MG-EA 34 400.66 MX2-AD-AD 33 740.85
2MG-AED 33 840.33 MX2-A-AD 36 447.02
2MG-EEAD 34 388.67 MX2-EA-AD 30 593.28
PG-ADI 32 598.66 MX2-AED-AD 33 736.99
PG-AD 33 957.10 MX2-EEAD-AD 33 734.99
MX1-AD-ADI 32 602.66

Table 6

Test for goodness of optimal models"

世代
Generation
统计量Statistic
U12 U22 U32 nW2 Dn
P1 13.3466(0.67) 77.1740*(0.03) 449.5930*(0.02) 43.0787(0.06) 0.0017(1)
F1 0.9408(0.33) 18.9166*(0.04) 186.0660(0.06) 32.3370(0.06) 0.0010(1)
P2 11.9102(0.76) 53.2343*(0.03) 250.2280*(0.04) 37.8770(0.06) 0.0014(1)
B1 3.0687(0.08) 4.9838*(0.03) 4.6020(0.07) 5.6486(0.08) 0.0527(0.71)
B2 6.1330(0.07) 2.9306(0.09) 7.5289**(0.00) 7.9918(0.07) 0.0246(0.86)
F2 2.4195(0.11) 4.7903(0.08) 7.4547**(0.00) 5.7211(0.06) 0.0311(0.34)

Table 7

Estimate values of first order genetic parameters"

一阶参数First order parameter 估计值Estimate value
m 11.15
da -10.41
db 9.42
ha 28.84
hb 28.84
ha/da -2.77
hb/db 3.06
i -8.78
jab 9.71
jba -10.11
l -65.11

Table 8

Estimate values of second order genetic parameters"

二阶参数
Second order parameter
估计值Estimate value
B1 B2 F2
σp2 381.25 438.86 375.53
σmg2 297.259 354.8615 291.5651
σ2 83.9769 83.9769 83.9769
hmg2 (%) 77.97 80.86 77.64
[1] 李忠南, 王克伟, 王越人, 等. 玉米品种先玉335的血缘系谱及主要农艺性状遗传分析. 玉米科学, 2018, 26(3):32-39.
[2] 李忠南, 王越人, 王振萍, 等. 玉米杂交当代F0百粒重的遗传分析. 玉米科学, 2015, 23(1):78-84.
[3] 贾玉峰, 张新生, 赵明. 普通玉米单交种与高油玉米杂交当代子粒杂种优势效应的研究. 吉林农业大学学报, 2003, 25(5):490-494.
[4] 周芳, 史振声, 王志斌. 玉米杂交当代子粒性状及营养成分的变化. 辽宁农业科学, 2007(1):5-8.
[5] 孙振, 莫乔程, 程备久, 等. 玉米百粒重性状遗传、杂种优势与亲子相关分析. 作物杂志, 2012(2):31-35.
[6] 刘伟华, 罗红兵, 邱博. 玉米雄穗发育及其百粒重的QTL定位研究进展. 作物研究, 2015, 29(6):667-670.
[7] 2021年国家玉米品种区域试验总结第二章.全国农技推广网.
[8] 唐启义. DPS数据处理系统. 北京: 科学出版社, 2007.
[9] 孔繁玲. 植物数量遗传学. 北京: 中国农业大学出版社, 2006.
[10] 盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003.
[11] 李忠南, 王越人, 李光发, 等. 玉米分蘖率的遗传研究. 玉米科学, 2016, 24(2):15-21.
[12] 李忠南, 王越人, 张艳辉, 等. 玉米DH系15D969超多穗行数的遗传分析. 作物杂志, 2020(5):89-93.
[13] 李忠南, 王越人, 车丽梅, 等. 通玉179六世代和DH世代4个穗部性状对比分析研究. 作物杂志, 2022(2):64-68.
[1] Cao Qingjun, Li Gang, Yang Hao, Lou Yuyong, Yang Fentuan, Kong Fanli, Li Xinbei, Zhao Xinkai, Jiang Xiaoli. The Effects of Different Tillage Practices on Seedbed Quality and Its Relationships with Seedling Population Construction and Grain Yield of Spring Maize [J]. Crops, 2023, 39(5): 249-254.
[2] Yu Le, Li Lin, Huang Hongjuan, Huang Zhaofeng, Zhu Wenda, Wei Shouhui. Weed Species Composition and Community Characterization in Maize Fields in Hubei Province [J]. Crops, 2023, 39(5): 272-279.
[3] Yang Zongying, Xiao Gui, Zhang Hongwei. Whole-Genome Predictive Analysis of Fresh Weight per Plant Using the Maize F1 Population [J]. Crops, 2023, 39(5): 43-48.
[4] Yang Mi, Wang Meijuan, Xu Haitao. Study on the Dynamic Development Difference of Husk of Maize Inbred Lines in Different Ecological Regions [J]. Crops, 2023, 39(5): 81-90.
[5] Yuan Liuzheng, Wang Huiqiang, WangQiuling , Zhu Shidie, ZhaoYueqiang , Yuan Manman, Wang Huitao, Zhang Yundong, Liu Jiayou, Yuan Yongqiang. Analysis of Combining Ability and Genetic Effect of Maize Inbred Lines under Shading Condition [J]. Crops, 2023, 39(4): 104-109.
[6] Zheng Fei, Chen Jing, Cui Yakun, Kong Lingjie, Meng Qingchang, Li Jie, Liu Ruixiang, Zhang Meijing, Zhao Wenming, Chen Yanping. Screening of High and Stable Yield Maize Varieties Suitable for Grain Mechanical Harvesting in Different Ecological Areas of the Huaibei Region [J]. Crops, 2023, 39(4): 110-117.
[7] Wang Liping, Bai Lanfang, Wang Tianhao, Wang Xiaoxuan, Bai Yunhe, Wang Yufen. Effects of Different Nitrogen Levels on Nitrogen Accumulation and Transport in Silage Maize [J]. Crops, 2023, 39(4): 165-173.
[8] Li Yuxin, Lu Min, Zhao Jiuran, Wang Ronghuan, Xu Tianjun, Lü Tianfang, Cai Wantao, Zhang Yong, Xue Honghe, Liu Yueʼe. The Production Status Investigation and Analysis of Summer Maize in Beijing-Tianjin-Tangshan Region [J]. Crops, 2023, 39(4): 174-181.
[9] Liu Songtao, Tian Zaimin, Liu Zigang, Gao Zhijia, Zhang Jing, He Donggang, Huang Zhihong, Lan Xin. Transcriptomic Analysis to Reveal Lodging Resistance Genes and Metabolism Pathways in Maize (Zea mays L.) [J]. Crops, 2023, 39(4): 31-37.
[10] Wen Shenghui, Yang Junwei, Wang Yang, Li Gongjian, Weng Jianfeng, Duan Canxing, Jia Xin, Wang Jianjun. Research Progress on Discovery of Resistance Genes and Molecular Breeding Utilization of Fungal Diseases in Maize [J]. Crops, 2023, 39(3): 1-11.
[11] Chang Qing, Li Lijun, Qu Jiahui, Zhang Yanli, Han Dongyu, Zhao Xinyao. Yield Advantage and Nitrogen Use Efficiency of Forage Maize-Rape Intercropping Following Wheat in Tumed Plain [J]. Crops, 2023, 39(3): 167-174.
[12] Guo Shulei, Wang Ying, Wei Liangming, Zhang Xin, Liu Yan, Wu Weihua, Lu Daowen, Lei Xiaobing, Wang Zhenhua, Lu Xiaomin. Analysis of Influencing Factors of Maize Yield under Different Ecological Conditions [J]. Crops, 2023, 39(3): 205-214.
[13] Gao Mutian, Qiu Guanjie, Zhu Tongtong, Li Ruilian, Deng Min, Luo Hongbing, Huang Cheng. Dissecting the Genetic Basis of Flag Leaf in Maize-Teosinte Introgression Line Population [J]. Crops, 2023, 39(3): 51-57.
[14] Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Qu Haitao, Li Fulin, Zhang Shuqin, Li Guangfa. Genetic Analysis of Color Traits in Sheath, Silk, Anther and Cob of Isolated Population Based on Maize DH Lines [J]. Crops, 2023, 39(3): 75-79.
[15] Zhang Panpan, Li Chuan, Zhang Meiwei, Zhao Xia, Huang Lu, Liu Jingbao, Qiao Jiangfang. Effects of Nitrification Inhibitor on the Nitrogen Concentration and Yield in Summer Maize Plants and Soil under Reduced Nitrogen Application [J]. Crops, 2023, 39(2): 145-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!