Crops ›› 2021, Vol. 37 ›› Issue (5): 28-34.doi: 10.16035/j.issn.1001-7283.2021.05.005

Previous Articles     Next Articles

Genome-Wide Identification and Analysis of HSP90 Gene Family in Maize

Cao Liru(), Wang Guorui(), Zhang Xin, Wei Liangming, Wei Xin, Zhang Qianjin, Deng Yazhou, Wang Zhenhua(), Lu Xiaomin()   

  1. Grain Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2020-10-10 Revised:2021-01-15 Online:2021-10-15 Published:2021-10-14
  • Contact: Wang Zhenhua,Lu Xiaomin E-mail:caoliru008@126.com;guorui9264@163.com;wzh201@126.com;luxiaomin2004@163.com

Abstract:

Heat shock protein 90 (HSP90) are widely involved in the growth and development of organisms and actively responds to a variety of abiotic stresses. In order to analyze HSP90 gene family of maize, the phylogenetic tree gene structure, conserved motif, GO enrichment and tissue expression pattern of the family gene were analyzed, and further analyzed the expression pattern in response to drought stress and protein interaction relationship. The results showed that the eleven ZmHSP90 genes were identified from the whole genome level of maize and ZmHSP90 were divided into five groups (I-V). ZmHSP90 genes on adjacent phylogenetic tree branches had similar gene structure and motif. GO enrichment analysis showed that the eleven ZmHSP90 genes were involved in protein folding process. The expression pattern analysis showed that the eleven ZmHSP90 genes were expressed in different tissues or organs, and ZmHSP90-1 had relatively higher expression. ZmHSP90-1 gene had a higher expression level in drought-tolerant maize inbred lines, and responds to drought and rewater processes rapidly. Protein interaction prediction showed that ZmHSP90-1 might cooperate with its interacting protein to respond to abiotic stress, thus exerting its biological function.

Key words: Maize, HSP90, Expression level, Drought response, Protein interaction

Table 1

HSP90 genes family in maize"

基因编号
Gene code
基因ID
Gene ID
染色体
Chromosome
基因组位置
Genomic location
内含子个数
Number of
introns
开放阅读
框长度
ORF length(bp)
氨基酸长度
Amino
acid length
蛋白
分子量
MW (kDa)
等电点
PI
亚细胞定位预测
Subcellular
location prediction
ZmHSP90-1 Zm00001d006008 2 195179025~195182945 3 2097 698 80.72 4.73 细胞质
ZmHSP90-2 Zm00001d014792 5 63348326~63353481 15 2427 808 92.87 4.62 内质网、线粒体
ZmHSP90-3 Zm00001d020827 7 134001581~134006410 19 2394 797 90.20 4.63 内质网
ZmHSP90-4 Zm00001d020898 7 135842402~135846744 3 2100 699 80.27 4.75 细胞质
ZmHSP90-5 Zm00001d024903 10 93908317~93911235 2 2145 714 81.80 4.77 细胞质
ZmHSP90-6 Zm00001d031332 1 186376331~186380883 4 2028 675 77.38 4.73 细胞质
ZmHSP90-7 Zm00001d035285 6 19340069~19371142 20 2382 793 89.70 5.03 内质网
ZmHSP90-8 Zm00001d036401 6 86902776~86908235 15 2415 804 92.57 4.67 内质网、线粒体
ZmHSP90-9 Zm00001d041719 3 134955964~134966224 20 2442 813 91.18 4.96 内质网
ZmHSP90-10 Zm00001d052809 4 201661975~201666670 19 2376 791 89.05 4.78 内质网
ZmHSP90-11 Zm00001d052855 4 202671658~202675792 3 2100 699 80.36 4.69 细胞质

Fig.1

Phylogenetic tree of HSP70 proteins from maize, arabidopsis and sorghum"

Fig.2

Analysis of HSP90 family motif and gene structure in maize The different colors in picture a indicate different motifs; the green in picture b indicates the UTR region, and the yellow indicates CDS region"

Table 2

GO analysis of maize HSP90 family genes"

GO类型
GO type
GO名称
GO ID
GO途径
GO term
基因编号
Gene code
生物进程 GO:0006457 蛋白质的折叠 ZmHSP90-1~11
Biological process GO:0034605 热响应 ZmHSP90-1ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
GO:0050821 蛋白质的稳定 ZmHSP90-1、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
GO:0009816 病菌的防御 ZmHSP90-5
GO:0061077 蛋白质的折叠 ZmHSP90-5
分子功能 GO:0005524 与ATP位点结合 ZmHSP90-1~11
Molecular function GO:0051082 与未知蛋白结合 ZmHSP90-1、ZmHSP90-3~11
GO:0000166 与核酸结合 ZmHSP90-5
细胞组分 GO:0005737 细胞质 ZmHSP90-1、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
Cellular component GO:0005829 胞质溶胶 ZmHSP90-1、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
GO:0005886 质膜 ZmHSP90-1、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
GO:0009986 细胞表面 ZmHSP90-1、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
GO:0032991 含蛋白质复合物 ZmHSP90-1、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、ZmHSP90-11
GO:0048471
细胞质区域
ZmHSP90-1ZmHSP90-2、ZmHSP90-4、ZmHSP90-5、ZmHSP90-6、
ZmHSP90-8、ZmHSP90-11
GO:0009570 叶绿体基质 ZmHSP90-3、ZmHSP90-7、ZmHSP90-9、ZmHSP90-10
GO:0005783 内质网 ZmHSP90-8

Fig.3

Expression profile of HSP90 genes family of maize in eight tissues"

Fig.4

Expression analysis of ZmHSP90-1 under drought stress M is the drought-resistant inbred line Zheng 8713, F is the sensitive inbred line Zheng K9713, Y refers to maize young leaf, J refers to maize young stem and G refers to maize young root, R1d and R3d indicate rewater one day and three days, respectively"

Table 3

Functional interaction protein prediction of ZmHSP90-1 gene"

互作基因Interaction gene 基因描述Gene description 氨基酸长度Amino acid length 互作系数Interaction coefficient
GRMZM2G105019 SGT1疾病抗性蛋白同源物1 361 0.995
GRMZM2G149704 SGT1蛋白质同源物A 361 0.992
GRMZM2G329306 肽基脯氨酰顺反异构酶CYP40 389 0.979
GRMZM2G154312 伴侣蛋白SBA1 192 0.963
GRMZM2G038108 HSP蛋白ATPase的激活剂 446 0.958
GRMZM2G021816 HSP90蛋白ATPase的激活剂 348 0.958
GRMZM2G010944 蛋白质精氨酸N-甲基转移酶1.5 197 0.958
GRMZM5G868908 整合素β-1-结合蛋白2 225 0.953
GRMZM2G536120 锚蛋白重复家族蛋白 376 0.940
GRMZM2G155314 锚蛋白1 417 0.940
[1] 于志晶, 尚丽霞, 蔡勤安, 等. 水稻热激蛋白基因HSP90转化大豆的研究. 大豆科学, 2016, 35(2):222-227.
[2] Wang W, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 2004, 9(5):244-252.
doi: 10.1016/j.tplants.2004.03.006
[3] Sangster T A, Queitsch C. The HSP90 chaperone complex,an emerging force in plant development and phenotypic plasticity. Current Opinion in Plant Biology, 2005, 8(1):86-92.
pmid: 15653405
[4] 汤佳乐, 徐海, 苑平, 等. 植物Hsp90s与耐热性关系的研究进展. 生物技术通报, 2020, 339(10):178-184.
[5] Reddy R K, Chaudhary S, Patil P, et al. The 90 kDa heat shock protein (hsp90) is expressed throughout Brassica napus seed development and germination. Plant Science, 1998, 131(2):131-137.
doi: 10.1016/S0168-9452(97)00254-9
[6] Wang G F, Wei X, Fan R, et al. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90):functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytologist, 2011, 191(2):418-431.
doi: 10.1111/nph.2011.191.issue-2
[7] Swindell W R, Huebner M, Weber A P. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 2007, 8(1):125.
doi: 10.1186/1471-2164-8-125
[8] Johnson J L, Brown C J C S, Chaperones. Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress and Chaperones, 2009, 14(1):83-94.
doi: 10.1007/s12192-008-0058-9 pmid: 18636345
[9] Song H, Zhao R, Fan P, et al. Overexpression of AtHsp90.2,AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses. Planta, 2009, 229(4):955-964.
doi: 10.1007/s00425-008-0886-y
[10] Chen C, Xia R, Chen H, et al. TBtools,a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv, 2018: 289660.
[11] 卢云泽. 小麦灌浆期旗叶响应高温胁迫的蛋白组学与热响应关键基因HSP90的全基因组分析. 咸阳:西北农林科技大学, 2018.
[12] Chou K C, Shen H B. Cell-PLoc:a package of Web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols, 2007, 3(2):153-162.
doi: 10.1038/nprot.2007.494
[13] Meinke D W. Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. New Phytologist, 2020, 226(2):306-325.
doi: 10.1111/nph.16071 pmid: 31334862
[14] Oh S E, Yeung C, Babaei-Rad R, et al. Cosuppression of the chloroplast localized molecular chaperone HSP90.5 impairs plant development and chloroplast biogenesis in Arabidopsis. BMC Research Notes, 2014, 7(1):643.
doi: 10.1186/1756-0500-7-643
[15] Inoue H, Li M, Schnell D J, et al. An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8):3173-3178.
[16] Song H, Fan P, Shi W, et al. Expression of five AtHsp90 genes in Saccharomyces cerevisiae reveals functional differences of AtHsp90s under abiotic stresses. Journal of Plant Physiology, 2010, 167(14):1172-1178.
doi: 10.1016/j.jplph.2010.03.016
[17] Velinov V, Vaseva I, Zehirov G, et al. Overexpression of the NMig1 gene encoding a NudC domain protein enhances root growth and abiotic stress tolerance in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11:815.
doi: 10.3389/fpls.2020.00815
[18] Buchberger A, Bukau B, Sommer T. Protein quality control in the cytosol and the endoplasmic reticulum:brothers in arms. Molecular Cell, 2010, 40(2):238-252.
doi: 10.1016/j.molcel.2010.10.001 pmid: 20965419
[19] 朱健康, 倪建平. 植物非生物胁迫信号转导及应答. 中国稻米, 2016, 22(6):52-60.
[20] Zhang J, Li J, Liu B, et al. Genome-wide analysis of the Populus Hsp90 gene family reveals differential expression patterns,localization,and heat stress responses. BMC Genomics, 2013, 14(1):532.
doi: 10.1186/1471-2164-14-532
[21] 刘玲玲. 玉米耐旱相关基因ZmHSP90-1ZmMYB-R1的序列特征分析与功能验证. 哈尔滨:东北农业大学, 2012.
[22] 肖化兴, 王立丰, 王萌. 橡胶树逆境胁迫响应基因HbHSP90.1的结构与功能分析. 分子植物育种, 2019, 17(16):5230-5237.
[23] 伍玲. 番木瓜SGT1和RAR1的功能验证及WRKY转录因子的研究. 武汉:华中农业大学, 2013.
[24] 王萍. 棉花中一个新的Parvulin类型肽酰脯氨酰顺反异构酶的功能分析. 泰安:山东农业大学, 2012.
[25] Richter K, Walter S, Buchner J. The Co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. Journal of Molecular Biology, 2004, 342(5):1403-1413.
pmid: 15364569
[26] Zhang Z, Zhang S, Zhang Y, et al. Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. The Plant Cell, 2011, 23(1):396-411.
doi: 10.1105/tpc.110.081356
[27] Zhang J, Clatterbuck R E, Rigamonti D, et al. Interaction between krit1 and icap1α infers perturbation of integrin β1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. Human Molecular Genetics, 2001, 10(25):2953-2960.
pmid: 11741838
[28] 吴利民. 拟南芥和水稻锚蛋白(ANKP)基因家族初步研究. 长沙:湖南师范大学, 2006.
[1] Zhang Yanru, Yang Zihe, Yang Rong, Han Jian, Jiao Jinlong, Zhao Li, Wu Yuanqi. Evaluation of the Adaptability of Tropical Maize Germplasm Population to Control Parental Mixed Selections [J]. Crops, 2021, 37(5): 14-19.
[2] Pei Zhichao, Zhou Jihua, Xu Xiangdong, Lan Hongliang, Wang Junying, Lang Shuwen, Zhang Weiqiang. Effects of Drought Treatment on Photosynthesis Rate, Antioxidant Properties of Leaves and Yield of Different Maize Varieties [J]. Crops, 2021, 37(5): 95-100.
[3] Wang Qingbin, Nie Zhentian, Lu Jiechun, Peng Chun’e, Zhang Min, Meng Hui, Liu Zhiguo, Geng Quanzheng. Effects of Paecilomyces variotii Extract on Yield and Nitrogen Utilization of Summer Maize [J]. Crops, 2021, 37(4): 166-171.
[4] Feng Yanfei, Yang Wei, Ren Guoxin, Deng Jie, Li Wenlong, Gao Shuren. Comprehensive Evaluation of Some Maize Hybrids in Heilongjiang Province [J]. Crops, 2021, 37(4): 46-50.
[5] Tao Zhiqiang, Yan Peng, Zhang Xuepeng. Preliminary Study on the Adaptation of Photosynthetic Characteristics to High Temperature at Grain Filling Stages in Different Eras Maize Varieties [J]. Crops, 2021, 37(4): 73-79.
[6] Liu Tianhao, Zhang Yifei, Wang Huaipeng, Yang Kejun, Zhang Jinsong, Sun Yishan, Xiao Shanshan, Xu Rongqiong, Du Jiarui, Li Jiayu, Peng Cheng, Wang Baosheng. Regulating Effects of Foliar Spraying Silicon Fertilizer on Dry Matter Accumulation and Translocation, Grain Yield and Quality of Maize in Cold Region [J]. Crops, 2021, 37(4): 112-117.
[7] Liang Qian, Wu Qingshan, Ge Junzhu, Wu Xidong, Yang Yong’an, Hou Haipeng, Zhang Yao, Ma Zhiqi. Effects of Sowing Date on Rain-Fed Summer Maize Yield Formation and Resource Utilization in North China Plain [J]. Crops, 2021, 37(4): 136-143.
[8] Gao Peng, Guo Meijun, Yang Xuefang, Dong Shuqi, Wen Yinyuan, Guo Pingyi, Yuan Xiangyang. Responses of Photosynthetic Fluorescence Parameters in Foxtail Millet and Maize Leaves under Nicosulfuron Stress [J]. Crops, 2021, 37(3): 70-77.
[9] Liu Jianzhao, Yuan Jingchao, Liang Yao, He Yu, Zhang Shuimei, Shi Haipeng, Cai Hongguang, Ren Jun. Analysis of Field Verification and Benefit on Full Maize Straw Returning with Deep Plowing Mode [J]. Crops, 2021, 37(2): 135-139.
[10] Li Zhongnan, Wang Yueren, Wu Shenghui, Liu Liwei, Qu Haitao, Sun Zhenyu, Li Guangfa. Preliminary Study on Inheritance of Haploid Natural Double Pollen Seeding Ability in Maize [J]. Crops, 2021, 37(2): 57-61.
[11] Zhang Xuepeng, Li Teng, Wang Biao, Liu Qing, Liu Hanyu, Tao Zhiqiang, Sui Peng. Study on High Temperature Stress Threshold of Maize Leaves [J]. Crops, 2021, 37(2): 62-70.
[12] Li Ruijie, Yan Peng, Wang Qingyan, Xu Yanli, Lu Lin, Dong Zhiqiang, Zhang Fenglu. Effects of 5-Aminolevulinic Acid and Ethephon on Photosynthetic Physiology of Leaves and Yield of Spring Maize in Northeast China [J]. Crops, 2021, 37(1): 135-142.
[13] Liu Jiamin, Wang Yang, Chu Xu, Qi Xin, Wang Manman, Zhao Ya'nan, Ye Youliang, Huang Yufang. Effects of Planting Density and Nitrogen Application Rate on Annual Yield and Nitrogen Use Efficiency of Wheat-Maize Rotation System [J]. Crops, 2021, 37(1): 143-149.
[14] Liu Yan, Gong Liang, Xing Yuehua, Bao Hongjing. Study on the Optimization of Organic-Inorganic Fertilization Model for Maize Based on Orthogonal Design [J]. Crops, 2021, 37(1): 168-174.
[15] Qi Jianshuang, Xia Laikun, Huang Bao, Li Chunying, Ma Zhiyan, Ding Yong, Gu Limin, Zhang Jun, Zhang Fengqi, Mu Xinyuan, Tang Baojun, Zhao Faxin, Zhang Lanxun. Discussion on the Application in the Regional Experiment of Maize Varieties by Entropy DTOPSIS Mode and Grey Situation Decision Methods [J]. Crops, 2021, 37(1): 60-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!