Crops ›› 2023, Vol. 39 ›› Issue (5): 81-90.doi: 10.16035/j.issn.1001-7283.2023.05.012

Previous Articles     Next Articles

Study on the Dynamic Development Difference of Husk of Maize Inbred Lines in Different Ecological Regions

Yang Mi1(), Wang Meijuan2(), Xu Haitao3   

  1. 1Sui County Agricultural and Rural Bureau, Shangqiu 476900, Henan, China
    2Liangyuan Agricultural Technology Extension Center of Shangqiu, Shangqiu 476000, Henan, China
    3Zhumadian Academy of Agricultral Sciences/Zhumadian Comprehensive Experimental Station of Henan Maize Industrial Technology System, Zhumadian 463000, Henan, China
  • Received:2023-04-03 Revised:2023-05-24 Online:2023-10-15 Published:2023-10-16

Abstract:

From 2022 to 2023, four maize backbone inbred lines Zhu85, Zhu136, ZM3358, and ZM7211 were used as experimental materials to study the differences in the dynamic development of husks among different types of maize inbred lines in different ecological regions of Henan and Hainan provinces. The results showed that the husk length of ZM7211 had the longest rapid growth period in the Henan, significantly greater than those of Zhu85, ZM3358, and Zhu136. The shortest rapid growth period was ZM3358 in the Hainan that was from the 7 to 13 days. The relationship between husk length and growth days well fitted logistic equations, the dynamic development difference of the longest husk length between the inbred lines in Henan and Hainan was significant. The development of husk width showed a continuous increasing trend, and the ratio of the widest husk width of maize inbred lines in Henan and Hainan was closed to 1:1. The husk areas of inbred lines ZM7211 and Zhu136 in Henan showed the trends of first increasing and then decreasing, while Zhu85 and ZM3358 showed the gradually increasing trends. The areas of husk in the Hainan were gradually increasing. The longest period of increasing fresh weight of husks in the Henan of ZM3358 was seven days, and the rapid growth periods of Zhu85 and ZM3358 were significantly greater than those of ZM7211 and Zhu136. Zhu85 in Hainan had the longest period of rapid increased in fresh weight of husks, which was extended by 4, 2, and 2d compared with Zhu136, ZM3358, and ZM7211, respectively. The volume of husk of ZM7211 in the Henan was significantly larger than those of Zhu85, ZM3358, and Zhu136 on the 11th to 15th day; Zhu85, Zhu136, ZM3358, and ZM7211 in the Hainan showed the slow and gradual increasing in the volume of their husks from first day to fifth days, and had a rapid linear increase from 7 to 15 days. There were significant correlations between the husk traits of maize inbred lines in different ecological regions, indicating that the growth state of synchronous development could be maintained between husk traits.

Key words: Maize, Inbred lines, Husk, Dynamic development, Logistic model

Fig.1

Temperature and sunshine hours during the growth period of husk of maize inbred lines in different ecological regions from 2022 to 2023"

Table 1

"

生态区
Ecological
region
日期
Date
ZM7211 驻85
Zhu85
ZM3358 驻136
Zhu136
河南
Henan
开始日期 2022-07-15 2022-07-19 2022-07-20 2022-07-15
结束日期 2022-08-02 2022-08-06 2022-08-07 2022-08-02
海南
Hainan
开始日期 2022-12-23 2022-12-27 2022-12-29 2022-12-23
结束日期 2023-01-10 2023-01-14 2023-01-16 2023-01-10

Fig.2

Dynamic development fitting of husk length of maize inbred lines in different ecological regions"

Table 2

Logistic model fitting parameters of husk length of maize inbred lines dynamic development equation"

自交系
Inbred
line
河南Henan 海南Hainan
模型方程
Model
equation
决定系数
Coefficient of
determination (R2)
标准误差
Standard
error
显著性
Significance
(α)
模型方程
Model
equation
决定系数
Coefficient of
determination (R2)
标准误差
Standard
error
显著性
Significance
(α)
Zhu85 y=14.38+$\frac{10.35}{1+\left(\frac{x}{5.48}\right)^{-2.0 x}}$ 0.9716 0.7522 0.05 y=11.64+$\frac{13.01}{1+\left(\frac{x}{6.87}\right)^{-1. x x w}}$ 0.9549 1.0228 0.05
Zhu136 y=10.45+$\frac{1792}{1+\left(\frac{x}{1158}\right)^{-6 a x a x}}$ 0.8549 1.1174 0.05 y=11.55+$\frac{10.32}{1+\left(\frac{x}{5.29}\right)^{-2 x}}$ 0.9833 0.5325 0.05
ZM3358 y=12.11+$\frac{1186}{1+\left(\frac{x}{7.64}\right)^{-2 x}}$ 0.9912 0.4772 0.05 y=10.99+$\frac{1527}{1+\left(\frac{x}{8.50}\right)^{-1 a x w}}$ 0.9801 0.7008 0.05
ZM7211 y=9.80+$\frac{13.78}{1+\left(\frac{x}{3.87}\right)^{-x a n}}$ 0.8279 2.3009 0.05 y=11.06+$\frac{14.52}{1+\left(\frac{x}{5.90}\right)^{-2 x+0 x}}$ 0.8662 2.3187 0.05

Table 3

Comparison of synchronous development differences in the longest husk length of maize inbred lines in different ecological regions"

生育日数
Growth days (d)
河南Henan 海南Hainan
Zhu85 Zhu136 ZM3358 ZM7211 Zhu85 Zhu136 ZM3358 ZM7211
1 18.1c 17.6e 17.5c 17.9e 20.0f 18.8e 19.2f 19.4e
3 21.4b 18.3e 20.0b 23.4d 20.0f 21.3d 20.0ef 22.1d
5 22.1b 18.9de 20.5b 23.5d 21.3e 21.3d 21.0de 22.5d
7 25.7a 21.8c 22.9a 23.3d 23.4d 24.0c 22.0cd 21.7de
9 26.0a 23.1abc 20.7b 28.4c 24.6c 25.2ab 22.9bc 26.9c
11 26.9a 20.0d 21.0b 29.7b 24.1cd 24.5bc 24.0b 27.2b
13 27.5a 22.3bc 22.9a 31.6a 25.7b 24.9ab 26.0a 29.7a
15 27.4a 23.8a 23.3a 29.3b 27.0a 25.7a 26.0a 29.0a
17 27.1a 23.5ab 23.0a 28.7c 24.6c 24.9ab 25.4a 27.3b
19 28.4a 23.5ab 23.2a 28.7c 26.0b 24.4bc 25.5a 27.0b

Fig.3

Development dynamic fitting of husk width of maize inbred lines in different ecological regions"

Table 4

Logistic model fitting parameters of husk width of maize inbred lines development dynamic equation"

自交系
Inbred
line
河南Henan 海南Hainan
模型方程
Model
equation
决定系数
Coefficient of
determination (R2)
标准误差
Standard
error
显著性
Significance
(α)
模型方程
Model
equation
决定系数
Coefficient of
determination (R2)
标准误差
Standard
error
显著性
Significance
(α)
Zhu85 y=6.02+$\frac{10.31}{1+\left(\frac{x}{6.60}\right)^{-2 x \sqrt{n}}}$ 0.9678 0.8184 0.05 y=6.68+$\frac{13.26}{1+\left(\frac{x}{10.14}\right)^{-1.206}}$ 0.9518 0.8603 0.05
Zhu136 y=5.57+$\frac{7.54}{1+\left(\frac{x}{5.96}\right)^{-2.3060}}$ 0.9498 0.7283 0.05 y=4.45+$\frac{977}{1+\left(\frac{x}{7.54}\right)^{-19 n=}}$ 0.9853 0.4209 0.05
ZM3358 y=5.14+$\frac{886}{1+\left(\frac{x}{1160}\right)^{-2180}}$ 0.9960 0.1895 0.05 y=4.93+$\frac{10.41}{1+\left(\frac{x}{1284}\right)^{-213 x}}$ 0.9952 0.2229 0.05
ZM7211 y=2.82+$\frac{6.38}{1+\left(\frac{x}{4.19}\right)^{-2 x a n}}$ 0.9763 0.3853 0.05 y=2.60+$\frac{6.33}{1+\left(\frac{x}{4.03}\right)^{-2 x a x}}$ 0.9807 0.3408 0.05

Table 5

Analysis of dynamic development ratio of the widest husk width of maize inbred lines in Henan and Hainan ecological regions"

生育日数
Growth days (d)
自交系Inbred line
Zhu85 Zhu136 ZM3358 ZM7211
1 0.91:1h 1.12:1d 0.88:1g 0.90:1h
3 0.81:1j 1.17:1c 1.10:1a 1.02:1c
5 0.90:1i 1.01:1g 1.06:1b 1.13:1a
7 1.19:1b 1.10:1e 1.06:1b 1.04:1b
9 0.96:1g 1.22:1b 0.92:1f 0.96:1f
11 1.28:1a 1.22:1b 0.94:1e 0.96:1f
13 1.01:1e 0.90:1i 1.03:1c 1.01:1d
15 0.99:1f 0.98:1h 1.00:1d 0.99:1e
17 1.04:1d 1.24:1a 0.92:1f 0.95:1g
19 1.07:1c 1.06:1f 0.86:1h 0.96:1f

Fig.4

Dynamic development of husk area of maize inbred lines in different ecological regions Different lowercase letters in the same inbred line indicate a significant difference at the 5% level, the same below"

Fig.5

Dynamic development of husk fresh weight of maize inbred lines in different ecological regions"

Fig.6

Dynamic development of husk volume of maize inbred lines in different ecological regions"

Table 6

Correlation of dynamic development of husk traits of maize inbred lines in different ecological regions"

生态区
Ecological
region
苞叶性状
Husk trait
长度
Length
宽度
Width
面积
Area
鲜重
Fresh
weight
体积
Volume
河南
Henan
长度 1.000
宽度 0.821** 1.000
面积 0.730** 0.754** 1.000
鲜重 0.686** 0.687** 0.976** 1.000
体积 0.680** 0.667** 0.949** 0.969** 1.000
海南
Hainan
长度 1.000
宽度 0.813** 1.000
面积 0.883** 0.705** 1.000
鲜重 0.919** 0.757** 0.954** 1.000
体积 0.923** 0.783** 0.973** 0.986** 1.000
[1] 赵成帅, 徐丽明, 刘佳, 等. 玉米苞叶力学特性试验研究——基于玉米联合收获机剥皮机构. 农机化研究, 2011, 33(12):100-105.
[2] 张海波. 玉米收获期苞叶松紧度的GWAS分析及与果穗含水量的关系. 沈阳:沈阳农业大学, 2018.
[3] 马智艳, 董永彬, 乔大河, 等. 不同种质玉米杂交种苞叶性状特征分析. 河南农业科学, 2015, 44(2):15-18.
[4] 尚赏, 郭书亚, 张艳, 等. 不同种植密度玉米苞叶性状差异及其与收获期籽粒含水率的相关性研究. 山东农业科学, 2022, 54(7):53-59.
[5] 张顺风, 张桂萍, Marasini M, 等. 玉米苞叶性状与收获期子粒含水率相关性研究. 河南农业大学学报, 2020, 54(4):551-558,565.
[6] Hahnen S, Joeris T, Kreezaler F, et al. Quantification of photosynthetic gene expression in maize C3 and C4 tissues by real-time PCR. Photosynthesis Research, 2003, 75:183-192.
pmid: 16245088
[7] Antonielli M, Lupattelli M, Venanzi G. Some characteristics of the chlorophyllous parenchyma of maize outside the leaf lamina. Plant Science Letters, 1981, 21:107-119.
doi: 10.1016/0304-4211(81)90176-0
[8] Fujikawa Y, Sakurai N, Sendo S, et al. Sugar metabolism in expanding husk leaf of flint corn (Zea mays L.) genotypes differing in husk leaf size. Journal of Agricultural Science, 2002, 139:278-279.
[9] Rossman E C. Freezing injury of maize seed. Plant Physiology, 1949, 24(4):629-656.
doi: 10.1104/pp.24.4.629 pmid: 16654254
[10] 何丹, 王秀全, 刘昌明, 等. 玉米苞叶几个农艺性状的相关关系及其遗传研究. 玉米科学, 2001, 9(1):43-45.
[11] Cross H Z, Kabir K M. Evaluation of field dry-down rates in early maize. Crop Science, 1989, 29(1):54-58.
doi: 10.2135/cropsci1989.0011183X002900010012x
[12] 徐洪文, 宋凤斌, 朱先灿, 等. 不同生育时期玉米苞叶叶绿素荧光特性差异分析. 华北农学报, 2009, 24(6):74-77.
doi: 10.7668/hbnxb.2009.06.015
[13] 王晓婷, 程隆棣, 刘丽芳. 玉米苞叶及其纤维的基本结构与性能. 纺织学报, 2016, 37(7):7-12.
[14] 孟剑霞. 玉米雌穗与苞叶发育研究进展. 安徽农学通报, 2007, 13(14):78-79.
[15] 宋凤斌, 徐洪文. 玉米苞叶光合生理特性研究进展. 玉米科学, 2008, 16(4):31-34.
[16] 许海涛, 冯晓曦, 许波, 等. 热带生态区玉米自交系雄穗生育特性研究. 山东农业科学, 2022, 54(8):54-61.
[17] 徐洪文, 宋凤斌, 童淑缓, 等. 两种基因型玉米苞叶的衰老生理特性. 植物资源与环境学报, 2008, 17(3):28-32.
[18] Quatter S, Jones R J, Crookston R K. Effect of water deficit during grain filling on the pattern of maize kernel growth and development. Crop Science, 1987, 27(4):726-730.
doi: 10.2135/cropsci1987.0011183X002700040025x
[19] 霍仕平, 晏庆九, 许明陆, 等. 玉米果穗苞叶性状的遗传分析. 杂粮作物, 2000, 20(2):8-12.
[20] 贺文姝, 张海波, 孙宏蕾, 等. 不同类群玉米自交系苞叶性状的差异分析. 华中农业大学学报, 2018, 37(4):30-35.
[21] 张林, 张宝石, 王霞, 等. 玉米收获期籽粒含水量与主要农艺性状相关分析. 东北农业大学学报, 2009, 40(10):9-12.
[22] 孟剑霞. 玉米果穗发育特性研究. 晋中:山西农业大学, 2005.
[23] 夏浩然, 徐涛, 贺伟, 等. 玉米自交系苞叶表型可塑性差异分析. 华中农业大学学报, 2021, 40(5):23-30.
[24] 李淑芳, 张春宵, 路明, 等. 玉米籽粒自然脱水速率研究进展. 分子植物育种, 2014, 12(4):825-829.
[1] Cao Qingjun, Li Gang, Yang Hao, Lou Yuyong, Yang Fentuan, Kong Fanli, Li Xinbei, Zhao Xinkai, Jiang Xiaoli. The Effects of Different Tillage Practices on Seedbed Quality and Its Relationships with Seedling Population Construction and Grain Yield of Spring Maize [J]. Crops, 2023, 39(5): 249-254.
[2] Yu Le, Li Lin, Huang Hongjuan, Huang Zhaofeng, Zhu Wenda, Wei Shouhui. Weed Species Composition and Community Characterization in Maize Fields in Hubei Province [J]. Crops, 2023, 39(5): 272-279.
[3] Yang Zongying, Xiao Gui, Zhang Hongwei. Whole-Genome Predictive Analysis of Fresh Weight per Plant Using the Maize F1 Population [J]. Crops, 2023, 39(5): 43-48.
[4] Qu Haitao, Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Tan Zhuo, Wang Chun, Wei Qiang, Luo Yao, Li Guangfa. Study on Genetic and Breeding Effects of 100-Grain Weight in Maize [J]. Crops, 2023, 39(5): 66-70.
[5] Yuan Liuzheng, Wang Huiqiang, WangQiuling , Zhu Shidie, ZhaoYueqiang , Yuan Manman, Wang Huitao, Zhang Yundong, Liu Jiayou, Yuan Yongqiang. Analysis of Combining Ability and Genetic Effect of Maize Inbred Lines under Shading Condition [J]. Crops, 2023, 39(4): 104-109.
[6] Zheng Fei, Chen Jing, Cui Yakun, Kong Lingjie, Meng Qingchang, Li Jie, Liu Ruixiang, Zhang Meijing, Zhao Wenming, Chen Yanping. Screening of High and Stable Yield Maize Varieties Suitable for Grain Mechanical Harvesting in Different Ecological Areas of the Huaibei Region [J]. Crops, 2023, 39(4): 110-117.
[7] Wang Liping, Bai Lanfang, Wang Tianhao, Wang Xiaoxuan, Bai Yunhe, Wang Yufen. Effects of Different Nitrogen Levels on Nitrogen Accumulation and Transport in Silage Maize [J]. Crops, 2023, 39(4): 165-173.
[8] Li Yuxin, Lu Min, Zhao Jiuran, Wang Ronghuan, Xu Tianjun, Lü Tianfang, Cai Wantao, Zhang Yong, Xue Honghe, Liu Yueʼe. The Production Status Investigation and Analysis of Summer Maize in Beijing-Tianjin-Tangshan Region [J]. Crops, 2023, 39(4): 174-181.
[9] Liu Songtao, Tian Zaimin, Liu Zigang, Gao Zhijia, Zhang Jing, He Donggang, Huang Zhihong, Lan Xin. Transcriptomic Analysis to Reveal Lodging Resistance Genes and Metabolism Pathways in Maize (Zea mays L.) [J]. Crops, 2023, 39(4): 31-37.
[10] Wen Shenghui, Yang Junwei, Wang Yang, Li Gongjian, Weng Jianfeng, Duan Canxing, Jia Xin, Wang Jianjun. Research Progress on Discovery of Resistance Genes and Molecular Breeding Utilization of Fungal Diseases in Maize [J]. Crops, 2023, 39(3): 1-11.
[11] Chang Qing, Li Lijun, Qu Jiahui, Zhang Yanli, Han Dongyu, Zhao Xinyao. Yield Advantage and Nitrogen Use Efficiency of Forage Maize-Rape Intercropping Following Wheat in Tumed Plain [J]. Crops, 2023, 39(3): 167-174.
[12] Guo Shulei, Wang Ying, Wei Liangming, Zhang Xin, Liu Yan, Wu Weihua, Lu Daowen, Lei Xiaobing, Wang Zhenhua, Lu Xiaomin. Analysis of Influencing Factors of Maize Yield under Different Ecological Conditions [J]. Crops, 2023, 39(3): 205-214.
[13] Gao Mutian, Qiu Guanjie, Zhu Tongtong, Li Ruilian, Deng Min, Luo Hongbing, Huang Cheng. Dissecting the Genetic Basis of Flag Leaf in Maize-Teosinte Introgression Line Population [J]. Crops, 2023, 39(3): 51-57.
[14] Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Qu Haitao, Li Fulin, Zhang Shuqin, Li Guangfa. Genetic Analysis of Color Traits in Sheath, Silk, Anther and Cob of Isolated Population Based on Maize DH Lines [J]. Crops, 2023, 39(3): 75-79.
[15] Zhang Panpan, Li Chuan, Zhang Meiwei, Zhao Xia, Huang Lu, Liu Jingbao, Qiao Jiangfang. Effects of Nitrification Inhibitor on the Nitrogen Concentration and Yield in Summer Maize Plants and Soil under Reduced Nitrogen Application [J]. Crops, 2023, 39(2): 145-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!