Crops ›› 2024, Vol. 40 ›› Issue (3): 32-39.doi: 10.16035/j.issn.1001-7283.2024.03.005

Previous Articles     Next Articles

Effects of Compound Microbial Fertilizer on Drought Resistance of Maize Seedlings under Drought Stress by Transcriptome Analysis

Qing Chen(), Liu Zhengxue(), Li Yanjie()   

  1. College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
  • Received:2023-01-11 Revised:2023-03-21 Online:2024-06-15 Published:2024-06-18

Abstract:

To explore the effects of compound microbial fertilizer on drought resistance of maize seedlings under drought stress, four treatments, blank control group (CK), phosphate solubilizing bacteria addition group (P), arbuscular mycorrhizal fungi addition group (A) and compound microbial fertilizer addition group (including phosphate solubilizing bacteria and arbuscular mycorrhizal fungi) (AP), were set up respectively with maize “Eyu 16” as the material, and then subjected to drought stress treatment through soil water control. Maize leaf samples were collected for physiological and biochemical index detection and transcriptome sequencing analysis. The results showed that after drought stress treatment (i.e. the fifth, tenth and fifteenth days), the highest MDA contents in maize leaves was CK, the lowest was AP treatment, and the activities of SOD and POD in maize leaves in AP treatment were significantly higher than those in CK, and the activities of CAT in maize leaves in AP treatment were higher than those in CK treatment during stress. Compared with CK, transcriptome sequencing analysis detected 320 differentially expressed genes (DEGs) in the leaves of maize seedlings in AP treatment, including 204 up-regulated genes and 116 down-regulated genes; the results of GO analysis showed that 34.33%, 43.12% and 22.55% of DEGs were enriched in biological processes, cell components and molecular functions, respectively. The results of KEGG analysis showed that the significant enrichment pathways included plant pathogen interaction, starch and sucrose metabolism, other types of O-glycan biosynthesis, zeatin biosynthesis, galactose metabolism and amino acid biosynthesis.

Key words: Maize seedling, Drought stress, Compound microbial fertilizer, Transcriptome

Table 1

Genes and primers for qRT-PCR"

基因编号Gene ID 正向引物Forward primer (5′-3′) 反向引物Reverse primer (5′-3′) 产物大小Product length (bp)
Zm00001d042553 ATCAGGGAGCTGAAGGTTGC TCACTACCCGCCTTCTACCA 181
Zm00001d012391 GCGGACCTGTTGGAGTTGAT AAGGGAAGTCCAGCCATTCG 166
Zm00001d037547 AGGACCAAGTTTGCCAGGTC CAGTGAATCCTGATGGGCGG 148
Zm00001d052316 GGAGCAGGTGGAAGCCATAAA TACAAATCCACCGACCCAGA 217
Zm00001d051362 GAAACTGGGTCTACTGGGTCG CCATTCATCCAGAGCGGAGA 152
newGene_1600 AGGGAGAAGGCAAAGTGGTG GCCACTTTGGTTGGTTACGC 137
maize-GAPDH TACCGACTTCCTTGGTGACAG ATACACAAGCAGCAACCATCC 207

Fig.1

Analysis of physiological and biochemical indexes of maize leaves in different treatments Different lowercase letters indicate that the same sample group has significant difference in different sampling times (P < 0.05);“**”,“*”and“ns”indicate that there are extremely significant differences (P < 0.01), significant differences (P < 0.05) and no significant differences (P > 0.05) among different groups at the same sampling time, respectively."

Table 2

Summary of transcriptome sequencing data"

样本Sample ReadSum BaseSum N% GC含量GC content (%) Q20 (%) Q30 (%)
AP1 55 717 049 16 664 072 650 0 44.89 98.04 93.96
AP2 58 628 704 17 549 116 484 0 43.61 97.95 93.76
AP3 59 557 613 17 831 272 662 0 43.77 97.95 93.75
CK1 59 340 105 17 752 302 060 0 43.63 97.92 93.68
CK2 62 524 897 18 710 041 996 0 43.78 98.10 94.15
CK3 62 101 920 18 587 242 720 0 43.95 97.94 93.75

Fig.2

Scatter plot of samples FPKM: fragments per kilobase of transcript per million fragments mapped, which is used as an indicator of transcript or gene expression levels."

Table 3

Total number of differentially expressed genes and its annotated number"

类型
Type
数量
Number
总数
Total
注释的差异表达基因数量Number of annotated differentially expressed genes
COG GO KEGG KOG NR Pfam Swiss-Prot eggNOG
上调表达Up-regulated 204 320 100 244 197 140 303 253 224 255
下调表达Down-regulated 116

Fig.3

GO function enrichment analysis of DEGs"

Fig.4

The top 20 pathways of differentially expressed genes enriched by KEGG"

Fig.5

Verification of DEGs by qPCR"

[1] 徐昆, 朱秀芳, 刘莹, 等. 气候变化下干旱对中国玉米产量的影响. 农业工程学报, 2020, 36(11):149-158.
[2] 郭艳阳, 刘佳, 朱亚利, 等. 玉米叶片光合和抗氧化酶活性对干旱胁迫的响应. 植物生理学报, 2018, 54(12):1839-1846.
[3] 李敏, 陈利顶, 杨小茹, 等. 城乡复合生态系统土壤微生物群落特征及功能差异:研究进展与展望. 土壤学报, 2021, 58(6):1368-1380.
[4] 王怀嵩, 张涛. 农业土壤健康评价体系研究进展. 生态与农村环境学报, 2022, 38(9):1093-1100.
[5] Oksana C, Gerlinde B D D, Martine P D V. Soil microbiota as game-changers in restoration of degraded lands. Science, 2022, 375:6584.
[6] Wang Z H, Song Y. Toward understanding the genetic bases underlying plant‐mediated “cry for help” to the microbiota. iMeta, 2022, 1 (1):1-12.
[7] 隋丽, 万婷玉, 路杨, 等. 内生真菌对植物促生、抗逆作用研究进展. 中国生物防治学报, 2021, 37(6):1325-1331.
doi: 10.16409/j.cnki.2095-039x.2021.06.024
[8] 张士功, 刘国栋, 刘更另. 植物营养与作物抗旱性. 植物学通报, 2001, 18(1):64-69,63.
[9] Sedri M H, Amini A, Golchin A. Evaluation of nitrogen effects on yield and drought tolerance of rainfed wheat using drought stress indices. Journal of Crop Science and Biotechnology, 2019, 22(3):235-242.
[10] 姜焕焕, 李嘉钦, 陈刚, 等. 解磷微生物及其在盐碱土中的应用研究进展. 土壤, 2021, 53(6):1125-1131.
[11] Vries F T, Griffiths R I, Knight C G, et al. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science, 2020, 368(6488):270-274.
doi: 10.1126/science.aaz5192 pmid: 32299947
[12] Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55(1):158-161.
[13] Trapnell C, Williams B A, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010, 28(5):511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[14] 杨华庚, 颜速亮, 陈慧娟, 等. 干旱胁迫对中粒种咖啡幼苗膜脂过氧化,抗氧化酶活性和渗透调节物质含量的影响. 热带作物学报, 2014, 35(5):944-949.
[15] 金思雨, 彭祚登. 刺槐和油松干旱胁迫响应研究进展. 西北林学院学报, 2022, 37(4):79-91.
[16] 王乐乐, 王权, 黄亚茹, 等. 水稻叶片气孔导度及叶肉导度对干旱胁迫的响应机理研究进展. 生命科学, 2022, 34(4):448- 458.
[17] 王硕, 贾潇倩, 何璐, 等. 作物对干旱胁迫的响应机制及提高作物抗旱能力的调控措施研究进展. 中国农学通报, 2022, 38(29):31-44.
doi: 10.11924/j.issn.1000-6850.casb2021-1042
[18] 陈丽飞, 刘越, 李雪萌, 等. 植物抗旱性研究进展. 吉林农业, 2019(2):78-79.
[19] 梁炜文, 周红英, 杨景竣, 等. 干旱胁迫对落羽杉幼苗生理特性的影响. 广西林业科学, 2022, 51(4):489-493.
doi: 10.19692/j.issn.1006-1126.20220406
[20] 张仁和, 郑友军, 马国胜, 等. 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响. 生态学报, 2011, 31(5):1303-1311.
[21] 孔亚丽, 朱春权, 曹小闯, 等. 土壤微生物介导植物抗盐性机理的研究进展. 中国农业科学, 2021, 54(10):2073-2083.
doi: 10.3864/j.issn.0578-1752.2021.10.004
[22] Kour D, Yadav A N. Bacterial mitigation of drought stress in plants: Current perspectives and future challenges. Current Microbiology, 2022, 79(9):1-19.
[23] Gu Y, Banerjee S, Dini-Andreote F, et al. Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations. The ISME Journal, 2022, 16(10):2448-2456.
[24] Sharma V, Sekhwal M K, Swami A K, et al. Identification of drought responsive proteins using gene ontology hierarchy. Bioinformation, 2012, 8(13):595-599.
doi: 10.6026/97320630008595 pmid: 22829738
[25] 李彦杰, 刘仁华, 周大祥, 等. 三峡库区消落带野生狗牙根对水淹适生性的转录组分析. 生态学报, 2018, 38(23):8434- 8441.
[26] 马玥, 苏宝玲, 韩艳刚, 等. 岳桦幼苗光合特性和非结构性碳水化合物积累对干旱胁迫的响应. 应用生态学报, 2021, 32(2):513-520.
doi: 10.13287/j.1001-9332.202102.028
[27] 商成慧, 周泽宇, 崔文雪, 等. 大豆脯氨酸积累相关基因家族鉴定及干旱胁迫表达分析. 植物遗传资源学报, 2022, 23(6):1793-1806.
[28] 张世英, 刘易超, 贾树强, 等. 中华金叶榆盆栽苗对干旱胁迫的生理响应与转录组分析. 河北农业大学学报, 2022, 45(1):69-78.
[1] Song Hui, Wang Tao, Xing Lu, Liu Junfang, Zhang Yang, Liu Jinrong, Chen Hongqi, Feng Baili. Transcriptome Analysis of Different Foxtail Millet (Setaria italica L.) Varieties Treated with Imazapic Herbicide [J]. Crops, 2024, 40(3): 13-22.
[2] Xue Xinyu, Zhan Wenbo, Chen Xinyi, Zhou Ruixiang, Wang Yongxia, Xue Ruili, Li Hua, Wang Yuexia, Li Yan. Effects of Drought Stress during Grain Filling Period on Physiological and Root Characteristics of Different Wheat Cultivars [J]. Crops, 2024, 40(3): 192-200.
[3] Zhang Yu, Yang Wenjing, Liu Xuan, Nie Fengjie, Zhang Li, Shi Lei, Zhang Guohui, Guo Zhiqian, Gong Lei. Cloning and Expression Analysis of Potato StCWIN1 Gene Promoter and Its Role under Drought Stress [J]. Crops, 2024, 40(2): 54-61.
[4] Dou Weize, Jiang Wen, Feng Yichuan, Jin Zhuo, Quan Xueli, Wu Songquan. Transcriptome Analysis Reveals Mechanisms of Calycosin- 7-O-β-D-Glucoside Accumulation in Astragalus membranaceus Adventitious Roots through Hydrogen Peroxide [J]. Crops, 2024, 40(1): 48-56.
[5] Jiang Shan, Liu Jia, Cao Liang, Ren Chunyuan, Jin Xijun, Zhang Yuxian. Effects of Exogenous Melatonin on Growth and Yield of Adzuki Bean under Drought Stress at Seedling Stage [J]. Crops, 2023, 39(4): 202-209.
[6] Shan Jiaye, Zhang Xuewei, Yan Min, Yang Jian, Wang Fei, He Jixian, Hu Gang, Wang Yuchen, Jing Yanqiu, Lei Qiang. Effects of Spraying Rare Earth Micro-Fertilizer on Growth and Physiological Characteristics of Flue-Cured Tobacco under Drought Stress [J]. Crops, 2023, 39(2): 100-105.
[7] Zhang Lixia, Guo Xiaoyan, Shi Pengfei, Nie Liangpeng, Ling Jingwei, Shen Peilin, Ding Li, Zhang Lin, Lü Yuhu, Pan Ziliang. Effects of Drought Stress on Growth, Yield and Benefits of Kenaf in Vigorous Growing Period [J]. Crops, 2023, 39(1): 184-189.
[8] Yin Xilong, Shi Yang, Li Wangsheng, Xing Wang. Photosynthetic Physiological Response to Drought Stress in Sugar Beet at Seedling Stage [J]. Crops, 2022, 38(6): 152-158.
[9] Zhang Ruidong, Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong. Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress [J]. Crops, 2022, 38(6): 234-240.
[10] Wen Danni, Bao Lingran, Liu Mengmeng, Shen Bo. Transcriptome Analysis of OsWD40 Overexpression Rice Roots in Response to Salt Stress [J]. Crops, 2022, 38(6): 42-53.
[11] Li Wangsheng, Wang Xueqian, Yin Xilong, Shi Yang, Liu Dali, Tan Wenbo, Xing Wang. Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage [J]. Crops, 2022, 38(6): 54-60.
[12] Pang Xingyue, Wan Lin, Li Su, Wang Yuhang, Liu Chen, Xiao Xiaolu, Li Xinhao, Ma Ni. Effects of Exogenous SLs and Nano-K2MoO4 on Seed Germination of Brassica napus L. under Drought Stress [J]. Crops, 2022, 38(4): 214-220.
[13] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
[14] Tan Qinliang, Cheng Qin, Pan Chenglie, Zhu Pengjin, Li Jiahui, Song Qiqi, Nong Zemei, Zhou Quanguang, Pang Xinhua, Lü Ping. Effects of Drought Stress on Physiological Indexes of New Sugarcane Variety Guire 2 [J]. Crops, 2022, 38(3): 161-167.
[15] Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!