Crops ›› 2022, Vol. 38 ›› Issue (3): 194-199.doi: 10.16035/j.issn.1001-7283.2022.03.028

Previous Articles     Next Articles

Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress

Yang Aojun(), Chang Qiaoling, Wang Peng, Wang Fang(), Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng   

  1. Agronomy College of Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2021-04-25 Revised:2021-06-22 Online:2022-06-15 Published:2022-06-20
  • Contact: Wang Fang E-mail:1628724036@qq.com;wangfang@gsau.edu.cn

Abstract:

Drought is one of the major variables affecting maize development and growth in Northwest China. 5-aminolevulinic acid (5-ALA) is a possible physiological active chemical substance that can help plants withstand stress. The effects of 5-ALA at different concentrations (0, 5, 10, 15, 20, 25, 30mg/L) on the germination and seedling growth of 20% PEG 6000 under drought stress were studied in order to clarify the effect of 5-ALA on maize germination and seedling growth under drought stress and to select the best concentration of the treatment, with the water as control. The results showed that, compared with the control, the germination and seedling growth of maize seeds were significantly inhibited under drought stress, the content of osmoregulation substances decreased, the activities of antioxidant enzymes decreased, the content of malondialdehyde (MDA) increased, and the permeability of plasma membrane increased. Compared with 0mg/L 5-ALA treatment, the treatment with 25mg/L 5-ALA could alleviate the damage caused by drought stress to maize seedlings, the main root length, bud length, root fresh weight, bud fresh weight, root dry weight and bud dry weight of maize seedlings were significantly increased, seed germination potential and germination rate were significantly increased by 76.92% and 65.52%, and the contents of proline, soluble sugar and soluble protein were increased by 136.82%, 81.36%, and 121.26%, respectively. The activities of superoxide dismutase, peroxidase and catalase increased by 200.58%, 182.10% and 536.56%, respectively. MDA content and cytoplasmic membrane permeability decreased by 64.54% and 68.21%, respectively. The dose effects of 5-ALA was obvious, and the treatment with 25mg/L 5-ALA was the best.

Key words: Maize, Drought stress, 5-aminolevulinic acid, Seed germination, Seedling growth

Fig.1

Changes of germination potential and germination rate of maize seeds under different treatments Different lowercase letters indicate significant difference (P < 0.05), the same below"

Table 1

Changes of growth and biomass of maize seedlings under different treatments"

处理
Treatment
根长
Root length
(cm)
芽长
Shoot length
(cm)
根鲜重(g/株)
Root fresh weight
(g/plant)
芽鲜重(g/株)
Shoot fresh weight
(g/plant)
根干重(g/株)
Dry weight of
root (g/plant)
芽干重(g/株)
Dry weight of
shoot (g/plant)
CK 9.125±0.364b 5.033±0.793b 0.276±0.013a 0.336±0.017ab 0.127±0.011ab 0.129±0.019ab
T1 2.375±0.263d 2.292±0.183c 0.101±0.013c 0.128±0.010b 0.037±0.008b 0.074±0.004b
T2 4.925±1.380c 4.808±0.381b 0.140±0.015b 0.158±0.006b 0.058±0.009b 0.094±0.007b
T3 5.925±0.335c 4.825±0.561b 0.152±0.021b 0.187±0.019ab 0.092±0.008b 0.107±0.002ab
T4 6.300±0.485c 4.908±0.108b 0.158±0.011b 0.207±0.021ab 0.131±0.021ab 0.117±0.019ab
T5 7.125±0.377c 4.908±0.328b 0.165±0.018b 0.244±0.040ab 0.154±0.034ab 0.121±0.015ab
T6 11.325±0.624a 7.233±1.147a 0.311±0.078a 0.355±0.171a 0.281±0.183a 0.131±0.012a
T7 6.875±0.536c 4.525±0.125b 0.168±0.039b 0.193±0.019ab 0.085±0.009b 0.118±0.010ab

Fig.2

Changes of MDA content and plasma membrane permeability of maize seedlings under different treatments"

Fig.3

Changes of osmotic adjustment substance contents of maize seedlings under different treatments"

Fig.4

Changes of antioxidant enzyme activities of maize seedlings under different treatments"

[1] 宋利兵, 姚宁, 冯浩, 等. 不同生育阶段受旱对旱区夏玉米生长发育和产量的影响. 玉米科学, 2016, 24(1):63-73.
[2] 夏璐, 赵蕊, 王怡针, 等. 干旱胁迫对夏玉米光合作用和叶绿素荧光特性的影响. 华北农学报, 2019, 34(3):102-110.
[3] 刘旦. 氨基乙酰丙酸调控干旱胁迫下油菜幼苗生长的生理机制研究. 杭州:浙江大学, 2012.
[4] 牛奎举. 外源5-氨基乙酰丙酸对干旱胁迫下草地早熟禾光合作用的调控机制. 兰州:甘肃农业大学, 2018.
[5] Phung T H, Jung S. Perturbed porphyrin biosynthesis contributes to differential herbicidal symptoms in photodynamically stressed rice (Oryza sativa) treated with 5-aminolevulinic acid and oxyfluorfen. Pesticide Biochemistry and Physiology, 2014, 116:103-110.
doi: 10.1016/j.pestbp.2014.10.002
[6] 李钠钾. 低温弱光胁迫下5-氨基乙酰丙酸对烟草幼苗生长及生理特性的影响与转录组测序分析. 重庆:西南大学, 2019.
[7] Watanabe K, Tanaka T, Hotta Y, et al. Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regulation, 2000, 32(1):99-103.
[8] 燕飞. 外源5-氨基乙酰丙酸(ALA)对盐胁迫下黄瓜幼苗生理调控效应研究. 杨凌:西北农林科技大学, 2014.
[9] 杨莎, 赵路颖, 宋珊珊, 等. 5-氨基乙酰丙酸调控花生耐盐性的生理机制研究. 中国油料作物学报, 2020, 42(6):1035-1042.
[10] 卢洁春, 牟保民, 郑殿峰, 等. 5-氨基乙酰丙酸对盐碱胁迫下大豆苗期生物量及生理特性的影响. 大豆科学, 2020, 39(1):84-89.
[11] 孙阳, 王燚, 曲丹阳, 等. 5-氨基乙酰丙酸提高玉米幼苗抗低温性及其生理机制. 生态学杂志, 2016, 35(7):1737-1743.
[12] 李海燕, 毕文双, 王燚, 等. 外源ALA对低温胁迫下玉米幼苗根系生长及生理特性的影响. 东北农业大学学报, 2019, 50(2):9-17
[13] 燕飞, 蒋文华, 曲东, 等. 外源 5-氨基乙酰丙酸对低温胁迫下茶树叶片光合及生理特性的影响. 茶叶科学, 2020, 40(5):597-606.
[14] 刘涛. 氨基乙酰丙酸调控番茄耐冷性的作用机制. 杨凌:西北农林科技大学, 2019.
[15] Balestrasse K B, Tomaro M L, Noriega G O, et al. The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry, 2010, 71:2038-2045.
doi: 10.1016/j.phytochem.2010.07.012 pmid: 21051062
[16] 程菊娥, 肖启明, 成飞雪, 等. 5-氨基乙酰丙酸对温室烟草的光合作用及抗逆性的促进效应. 湖南农业科学, 2007(4):58-60.
[17] 偶春, 姚侠妹, 姚晓洁, 等. 外源5-氨基乙酰丙酸和PEG处理下栀子幼苗光合及抗氧化特性变化. 干旱地区农业研究, 2016, 34(6):235-242.
[18] 张春平, 何平, 韦品祥, 等. 外源Ca2+,ALA,SA和Spd对盐胁迫下紫苏种子萌发及幼苗生理特性的影响. 中国中药杂志, 2010, 35(24):3260-3265.
[19] 刘海英. 外源ALA、SNP和GB对干旱胁迫下桔梗Platycodon grandiflorums种子萌发及幼苗生理生化特性的影响. 重庆:西南大学, 2013.
[20] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[21] 张艳杰. H2S调控重金属 Cr(VI)胁迫下小麦种子萌发的信号机制. 郑州:河南工业大学, 2015.
[22] 原向阳, 郭平毅, 张丽光, 等. 干旱胁迫下草甘膦对抗草甘膦大豆幼苗保护酶活性及脂质过氧化作用的影响. 中国农业科学, 2010, 43(4):698-705.
[23] 谢英赞. 外源GB、ALA及SNP对干旱胁迫下虎掌(Pinellia pedatisecta)形态特征、生理特性及有效药用成分含量的影响. 重庆:西南大学, 2013.
[24] 孙阳. 5-氨基乙酰丙酸(ALA)诱导玉米幼苗抗冷性的生理效应. 哈尔滨:东北农业大学, 2017.
[25] 孙业民. 多效唑和氯化钾影响干旱胁迫下马铃薯幼苗抗性生理的机制. 兰州:甘肃农业大学, 2013.
[26] 唐琪. 过量表达Pt APX基因对烟草抵御高、低温胁迫的影响. 济南:山东师范大学, 2014.
[27] 许锁链, 李忠光, 龚明. 外源甜菜碱对PEG胁迫下小桐子种子萌发和幼苗生长的保护作用. 种子, 2011, 30(9):29-33.
[1] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[2] Li Long, Xiao Rang, Zhang Yongling. Effects of Combined Application of Nitrogen, Phosphorus and Potassium on Seed Maize Yield and Economic Benefit [J]. Crops, 2022, 38(5): 111-117.
[3] Li Yanlu, Wang Junpeng, Yu Xinzhi, Wei Honglei, Chen Qiyu, Zhao Hongxiang, Xu Chen, Bian Shaofeng, Zhang Zhian. Effects of Mulching Different Plastic Films on Accumulation and Distribution of Dry Matter and Nitrogen in Maize in Cold and Cool Areas [J]. Crops, 2022, 38(5): 124-129.
[4] Zhang Jianye, Du Qingzhi, Liu Xiang, Deng Jiahui, Jiao Qin, Gong Luo, Jiang Xingyin. The Effects of S-ABA on Germination and Growth of Maize under Salt-Alkali Stress [J]. Crops, 2022, 38(5): 167-173.
[5] Zhou Chao, Zhang Tiantian, Yang Li’na, Zhang Yong, Ma Chong, Dai Weicheng, Wu Cuixia, Song Min. Systemic Distribution of Flonicamid in Maize and Its Activity Effect against Rhopalosiphum maidis with Root Absorption [J]. Crops, 2022, 38(5): 261-266.
[6] Duan Mengran, Liu Fengze, Ge Jianrong, Yi Hongmei, Yang Hongming, Gao Yuqian, Yue Pengwu, Ma Wenyu, Ban Xiuli, Wang Fengge. Purity Identification of SSR Molecular Markers for Main Maize Varieties in Jilin Province [J]. Crops, 2022, 38(5): 34-41.
[7] Zhu Hang, Cui Fangqing, Lu Chuanli, Chen Weiwei, Li Xuhui, Lu Siqi, Zhang Xiangbo, Zhao Hua, Qi Yongwen. Analysis of Carotenoid Content in Maize Inbred Lines with Different Color Grains [J]. Crops, 2022, 38(5): 62-68.
[8] Wang Yuanyuan, Gu Zihan, Chen Pingping, Yi Zhenxie. Study on Feasibility of Seasonal Substituted Planting of Maize to Rice in Cd Contaminated Paddy Field [J]. Crops, 2022, 38(4): 187-192.
[9] Pang Xingyue, Wan Lin, Li Su, Wang Yuhang, Liu Chen, Xiao Xiaolu, Li Xinhao, Ma Ni. Effects of Exogenous SLs and Nano-K2MoO4 on Seed Germination of Brassica napus L. under Drought Stress [J]. Crops, 2022, 38(4): 214-220.
[10] Wang Jiabao, Ji Huaiyuan, Mei Jiafa, Tao Zhiguo, Shu Zhifeng, Jiang Sanqiao. The Breeding of New Maize Variety Quankeyu 900 and Its Cultivation, Seed Production Techniques [J]. Crops, 2022, 38(4): 267-270.
[11] Xu Shiying, Wang Ning, Cheng Hao, Feng Wanjun. Dynamic Changes of Seedling Traits among Maize Hybrids and Their Parents in Response to Low Nitrogen Stress [J]. Crops, 2022, 38(4): 90-98.
[12] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
[13] Tan Qinliang, Cheng Qin, Pan Chenglie, Zhu Pengjin, Li Jiahui, Song Qiqi, Nong Zemei, Zhou Quanguang, Pang Xinhua, Lü Ping. Effects of Drought Stress on Physiological Indexes of New Sugarcane Variety Guire 2 [J]. Crops, 2022, 38(3): 161-167.
[14] Zhang Jun, Chen Shunquan, Zhang Wenqing, Li Gaochao, Bell. Adaptability of Ten Maize Varieties in Cameroon [J]. Crops, 2022, 38(3): 87-91.
[15] Cao Liru, Lu Xiaomin, Wang Guorui, Dang Zun, Qiu Tian, Qiu Jianjun, Tian Yunfeng, Wang Zhenhua, Dang Yongfu. Effects of Foliar Spraying with Carbon-Adsorbed Polyglutamic Acid on Growth and Development of Maize [J]. Crops, 2022, 38(2): 158-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!