Crops ›› 2024, Vol. 40 ›› Issue (4): 232-239.doi: 10.16035/j.issn.1001-7283.2024.04.030

Previous Articles     Next Articles

Effects of Slow-Release Urea Combined with Fulvic Acid on the Development and Grain Filling Characteristics of Longzi Black Highland Barley

Zhou Xin(), Zhu Dingying, Zhao Xianglong, Chen Gongxi, Wang Jianlin()   

  1. Plant Science College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, Tibet, China
  • Received:2023-04-12 Revised:2023-06-06 Online:2024-08-15 Published:2024-08-14

Abstract:

In order to provide theoretical basis for the high-yield cultivation of Longzi black highland barley, we studied the effects of different slow-release urea combined with fulvic acid on the growth and grain filling characteristics of Longzi black highland barley. The dynamic changes of grain phenotype and grain color in filling period of Longzi black highland barley were analyzed by using random block design and artificial measurement combined with computer image recognition technology. The results showed that the surface area, length and width of the grain of Longzi black highland barley could be increased by the treatment of each slow-release urea combined with fulvic acid, so as to increase the grain weight and the 1000-grain weight. The color change of the seeds was mainly at 14 d after anthesis, when the seeds began coloring, and the color deepened with the progress of filling. At 28 d after anthesis, the seed embryos began coloring, until the maturity stage, the whole seeds were colored, and the color reached the deepest. The maximum filling rate (Rmax), the gradual filling rate (R1) and the rapid filling rate (R2) were positively correlated with the 1000-grain weight. There was a significant positive correlation between filling rate (R3) and 1000-grain weight at slow growth stage. Increasing filling rate and extending filling duration was an effective measure to increase the yield of black highland barley. Slow-release urea combined with fulvic acid improved the grain filling capacity and 1000-grain weight of black barley.

Key words: Slow-release urea, Fulvic acid, Longzi black highland barley, Grain filling characteristics

Table 1

Dosage ratio of fertilizer in each treatment kg/hm2"

处理
Treatment
配施比例
Application ratio
氮肥用量
Nitrogen
fertilizer dosage
黄腐酸用量
Fulvic acid
dosage
CK 不施尿素 0 0
N1 100%常规施氮 135 0
N2 80%常规施氮 108 0
N3 100%缓释尿素 135 0
N4 80%缓释尿素 108 0
N5 100%常规施氮+黄腐酸 135 45
N6 80%常规施氮+黄腐酸 108 45
N7 100%缓释尿素+黄腐酸 135 45
N8 80%缓释尿素+黄腐酸 108 45

Table 2

Effects of different treatments on grain phenotype of Longzi black barley"

处理Treatment 籽粒面积Grain area (mm2) 粒长Grain length (mm) 粒宽Grain width (mm) 千粒重1000-grain weight (g)
CK 7.51±0.04i 5.63±0.42i 1.89±0.10i 3.52±0.41bc
N1 10.10±0.21c 6.72±0.35d 2.11±0.08c 4.14±0.12ab
N2 8.78±0.75g 6.37±0.81g 1.90±0.28h 3.32±0.51c
N3 8.96±1.01f 6.57±0.25e 1.92±0.06g 3.83±0.37bc
N4 8.07±0.52h 5.99±0.56h 1.98±0.25d 3.56±0.25bc
N5 9.17±0.21e 6.55±0.31f 1.97±0.23e 4.21±0.55ab
N6 9.45±0.55d 6.77±0.30c 1.95±0.05f 4.03±0.26bc
N7 11.87±0.35a 7.02±0.70a 2.33±0.30a 4.84±0.77a
N8 10.24±0.28b 6.84±0.09b 2.21±0.23b 4.15±0.39ab

Table 3

Analysis of correlation between seed shape and 1000-grain weight of black barley"

性状Trait 千粒重1000-grain weight 籽粒面积Grain area 粒长Grain length 粒宽Grain width 长宽比Length-width ratio
千粒重1000-grain weight 1.00 0.89** 0.78** 0.83** 0.42
籽粒面积Grain area 0.89** 1.00 0.90** 0.89** 0.47
粒长Grain length 0.78** 0.90** 1.00 0.68* 0.74*
粒宽Grain width 0.83** 0.89** 0.68* 1.00 0.06
长宽比Length-width ratio 0.42 0.47 0.74* 0.06 1.00

Fig.1

Dynamic changes of black hulless barley grain color during flowering to maturity"

Table 4

Comparison of fitting effect of different treatments in grain filling process of black barley"

处理
Treatment
模拟方程
Simulation equation
方程决定系数
Equation determination coefficient
Logistic
RL2
MMF
RM2
Cubic
RC2
CK Y=39.08/(1+47.56e-0.22T) 0.999 0.997 0.994
N1 Y=41.50/(1+42.60e-0.21T) 0.999 0.998 0.995
N2 Y=40.22/(1+41.97e-0.21T) 0.995 0.998 0.994
N3 Y=42.64/(1+44.40e-0.22T) 0.995 0.996 0.990
N4 Y=42.03/(1+42.80e-0.21T) 0.995 0.996 0.992
N5 Y=42.99/(1+47.69e-0.22T) 0.995 0.995 0.998
N6 Y=42.36/(1+43.50e-0.21T) 0.995 0.995 0.990
N7 Y=44.48/(1+51.04e-0.23T) 0.995 0.994 0.986
N8 Y=44.02/(1+48.01e-0.22T) 0.995 0.995 0.989

Fig.2

Effects of different ureas combined with fulvic acid on 1000-grain weight of black highland barley Different lowercase letters indicate significant difference at the 0.05 level."

Table 5

Logistic equation fitting of grain filling of black highland barley under different treatments"

处理
Treatment
模拟方程
Simulation equation
理论千粒重
Theoretical 1000-grain weight (g)
实际千粒重
Actual 1000-grain weight (g)
决定系数
Decision coefficient
CK Y=39.08/(1+47.56e-0.22T) 39.08 39.17 0.999
N1 Y=41.50/(1+42.60e-0.21T) 41.50 41.36 0.999
N2 Y=40.22/(1+41.97e-0.21T) 40.22 40.38 0.995
N3 Y=42.64/(1+44.40e-0.22T) 42.65 43.06 0.995
N4 Y=42.03/(1+42.80e-0.21T) 42.03 42.20 0.995
N5 Y=42.99/(1+47.69e-0.22T) 42.99 43.42 0.995
N6 Y=42.36/(1+43.50e-0.21T) 42.36 42.64 0.995
N7 Y=44.48/(1+51.04e-0.23T) 44.68 45.30 0.995
N8 Y=44.02/(1+48.01e-0.22T) 44.02 44.47 0.995

Table 6

Secondary parameters of grain filling of black highland barley under different treatments"

处理
Treatment
Rmax
[g/(1000-grain·d)]
Tmax
(d)
T1
(d)
T2
(d)
T3
d)
Ta
(d)
Tb
(d)
Tc
(d)
R1
[g/(1000-grain·d)]
R2
[g/(1000-grain·d)]
R3
[g/(1000-grain·d)]
CK 2.13 17.69 11.65 23.72 38.73 11.65 12.06 15.01 0.71 1.89 0.51
N1 2.22 17.52 11.37 23.67 38.97 11.37 12.30 15.31 0.77 2.02 0.49
N2 2.10 17.91 11.60 24.22 39.92 11.60 12.62 15.71 0.73 1.97 0.42
N3 2.31 17.53 11.44 23.61 38.76 11.44 12.17 15.15 0.79 2.07 0.53
N4 2.21 17.89 11.62 24.16 39.78 11.62 12.54 15.61 0.76 2.06 0.45
N5 2.39 17.35 11.44 23.26 37.97 11.43 11.82 14.71 0.79 2.06 0.62
N6 2.22 18.02 11.73 24.32 39.98 11.73 12.58 15.66 0.76 2.09 0.45
N7 2.55 17.23 11.46 23.00 37.36 11.46 11.54 14.36 0.82 2.11 0.72
N8 2.38 17.92 11.83 24.02 39.20 11.83 12.19 15.18 0.79 2.14 0.54

Table 7

Correlation analysis of different ureas combined with fulvic acid on grain filling parameters and actual grain weight of black barley"

指标Index Y Rmax Tmax T1 T2 T3 Ta Tb Tc R1 R2 R3
Y 0.92** -0.35 -0.03 -0.42 -0.47 -0.03 -0.50 -0.50 0.95** 0.94** 0.68*
Rmax 0.92** -0.65* -0.23 -0.73* -0.77** -0.23 -0.80** -0.80** 0.93** 0.75* 0.91**
Tmax -0.35 -0.65* 0.81** 0.98** 0.94** 0.81** 0.87** 0.87** -0.56 -0.09 -0.83**
T1 -0.03 -0.23 0.81** 0.68* 0.55 1.00** 0.41 0.41 -0.33 0.10 -0.38
T2 -0.42 -0.73* 0.98** 0.68* 0.99** 0.68* 0.95** 0.95** -0.59 -0.13 -0.91**
T3 -0.47 -0.77** 0.94** 0.55 0.99** 0.55 0.99** 0.99** -0.59 -0.17 -0.95**
Ta -0.03 -0.23 0.81** 1.00** 0.68* 0.55 0.41 0.41 -0.33 0.10 -0.38
Tb -0.50 -0.80** 0.87** 0.41 0.95** 0.99** 0.41 1.00** -0.58 -0.20 -0.97**
Tc -0.50 -0.80** 0.87** 0.41 0.95** 0.99** 0.41 1.00** -0.58 -0.20 -0.97**
R1 0.95** 0.93** -0.56 -0.33 -0.59 -0.59 -0.33 -0.58 -0.58 0.87** 0.73*
R2 0.94** 0.75* -0.09 0.10 -0.13 -0.17 0.10 -0.20 -0.20 0.87** 0.40
R3 0.68* 0.91** -0.83** -0.38 -0.91** -0.95** -0.38 -0.97** -0.97** 0.73* 0.40
[1] 高雪, 刘国一, 普布贵吉, 等. 不同施肥方式对隆子黑青稞生长、产量和营养品质的影响. 大麦与谷类科学, 2020, 37(3):41-44.
[2] Zhu F M, Du B, Xu B J. Superfine grinding improves functional properties and antioxidant capacities of bran dietary fibre from Qingke (hull-less barley) grown in Qinghai-Tibet Plateau, China. Journal of Cereal Science, 2015, 65:43-47.
[3] Ge X Z, Jing L Z, Zhao K, et al. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chemistry, 2021, 335:127655.
[4] Shen Y B, Hu C, Zhang H, et al. Characteristics of three typical Chinese highland barley varieties:Phenolic compounds and antioxidant activities. Journal of Food Biochemistry, 2017, 42:12488.
[5] Yao X H, Wu K L, Yao Y H, et al. Construction of a high-density genetic map:genotyping by sequencing (GBS) to map purple seed coat color (Psc) in hulless barley. Hereditas, 2018, 155:37.
[6] El-Sayed M A, Christopher Y J, Rabalski I. Anthocyanin composition in black, blue, pink, purple, and redcereal grains. Food Chemistry, 2006, 54:4696-4704.
[7] Guo H, Lin S, Lu M, et al. Characterization, in vitro binding properties, and inhibitory activity on pancreatic lipase of β-glucans from different Qingke (Tibetan hulless barley) cultivars. International Journal of Biological Macromolecules, 2018, 120:2517-2522.
doi: S0141-8130(18)32585-6 pmid: 30195000
[8] 张华国, 刘国一. 西藏山南隆子黑青稞丰产栽培技术. 安徽农学通报, 2021, 27(3):26-27,32.
[9] 林津, 洛桑仁青, 周陶鸿, 等. 西藏山南隆子县黑青稞与白青稞的营养成分及生理活性物质的比较分析. 食品科技, 2016, 41(10):88-92.
[10] 李世清, 邵明安, 李紫燕, 等. 小麦籽粒灌浆特征及影响因素的研究进展. 西北植物学报, 2003(11):2030-2038.
[11] 孟兆江, 孙景生, 段爱旺, 等. 调亏灌溉条件下冬小麦籽粒灌浆特征及其模拟模型. 农业工程学报, 2010, 26(1):18-23.
[12] 王寒冬, 陈文杰, 张波, 等. 人工合成小麦改良品系的种子表型性状分析. 分子植物育种, 2018, 16(18):6097-6104.
[13] 常晖, 程秋香, 李吟平, 等. 黄芪种子种皮颜色和大小与种子活力相关性研究. 种子, 2015, 34(8):95-97,104.
[14] 李贺勤, 张文健, 江绪文, 等. 种子大小和种皮颜色对甘蓝种子活力的影响. 种子, 2013, 32(10):46-49.
[15] 曹莉. 缓释尿素对辣椒产量、品质及土壤环境的影响. 兰州: 甘肃农业大学, 2014.
[16] Wang H Y, Zhang D, Zhang Y T, et al. Ammonia emissions from paddy fields are underestimated in China. Environmental Pollution, 2018, 235:482-488.
doi: S0269-7491(17)33749-1 pmid: 29324377
[17] 邱悦. 缓释氮肥对土壤氮肥利用效率及棉花产量品质的影响. 石河子: 石河子大学, 2022.
[18] 刘奇华, 马惠, 赵庆雷, 等. 氮磷肥减量施用对直播稻籽粒灌浆特性及产量的影响. 山东农业科学, 2021, 53(12):102-108.
[19] 高雪健. 控释尿素与普通尿素配施对糯玉米产量和品质的影响. 扬州: 扬州大学, 2022.
[20] 杨雯玉, 贺明荣, 王远军, 等. 控释尿素与普通尿素配施对冬小麦氮肥利用率的影响. 植物营养与肥料学报, 2005, 11(5):627-633.
[21] 庞强强, 陈日远, 刘厚诚, 等. 外源黄腐酸对硝酸盐胁迫下小白菜生长和品质的影响. 广东农业科学, 2015, 42(7):27-31.
[22] 刘玉丰, 闫征南, 万泽, 等. 盐碱胁迫下黄腐酸对甜瓜幼苗生长抑制的缓解效应. 北方园艺, 2021(24):45-50.
[23] 张毅. 不同黄腐酸施用量对隆子黑青稞生理特性及产量的影响. 拉萨: 西藏大学, 2020.
[24] 张永霞, 张英杰, 巩冠群, 等. 黄腐酸对植物生长作用效果研究. 应用化工, 2021, 50(4):1069-1072,1076.
[25] Braziene Z, Virgilijus P, Dovile A. The influence of fulvic acid on spring cereals and sugar beets seed germination and plant productivity. Environmental Research, 2021, 195:110824.
[26] 颜赛娜, 陈斌. 基于Logistic和Gompertz模型拟合大白猪体重生长曲线的研究. 经济动物学报, 2023, 27(1):21-25.
[27] 黄登香, 卢春婷. 基于Logistic回归模型的几类变量选择方法. 大众标准化, 2023(8):139-141.
[28] 包太, 税月. MMF生长模型在隧道监测数据分析中的应用研究. 贵州大学学报(自然科学版), 2009, 26(4):131-133.
[29] 李雪佳, 封红旗, 梅宇, 等. 基于三次多项式拟合三角函数的地理空间距离计算算法. 计算机测量与控制, 2016, 24(5):199-201,206.
[30] Dholakia B B, Dhaliwa H S, Singh H, et al. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breeding, 2003, 122(392):1-5.
[31] 程虎虎. 玉米应用缓控释肥料田间肥效试验研究. 农业与技术, 2018, 38(4):9-10,112.
[32] 王殿武, 方正, 褚达华. 黄腐酸对土壤水分春小麦形态及籽粒产量的影响. 河北农业大学学报, 1994(增1):131-135.
[33] Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172(2):1165-1177.
doi: 10.1534/genetics.105.044586 pmid: 16079235
[34] Sun X Y, Wu K, Zhao Y, et al. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica, 2009, 165(3):615-624.
[35] Gegas V C, Aida N, Simon G, et al. A genetic framework for grain size and shape variation in wheat. The Plant Cell, 2010, 22(4):1046-1056.
doi: 10.1105/tpc.110.074153 pmid: 20363770
[36] 李君霞, 朱灿灿, 代书桃, 等. 不同夏谷品种光合特性、干物质积累转运及灌浆特性. 江苏农业科学, 2021, 49(23):82-86.
[37] 窦克磊, 韩金玲, 王健, 等. 不同施肥模式对春玉米干物质积累转运、籽粒灌浆和产量的影响. 江苏农业科学, 2022, 50(20):94-100.
[38] 李旭铮, 李援农, 邹奇芳, 等. 缓释肥配施对夏玉米灌浆特性的影响. 节水灌溉, 2022(8):84-90,101.
[39] 东强, 张毅, 朱定英, 等. 不同氮肥处理对黑青稞籽粒灌浆特性的影响. 麦类作物学报, 2023, 43(7):940-946.
[40] 刘庆芳, 李小康, 刘保华, 等. 冬小麦籽粒灌浆特性和旗叶光合特性对产量的影响. 江苏农业科学, 2022, 50(19):61-67.
[41] 何雨桔, 刘琼, 王焜, 等. 施氮量对不同株叶型小麦旗叶光合及籽粒灌浆特性的影响. 四川农业大学学报, 2022, 40(5):707-713.
[42] 王丽娜, 韩玉林, 邹少奎, 等. 不同小麦品种粒重与籽粒灌浆特性探究. 山东农业科学, 2019, 51(10):40-44.
[1] Dongfang Cai,Shufen Zhang,Jianping Wang,Junping He,Jinhua Cao,Yancheng Wen,Lei Zhao,Dongguo Wang,Jiacheng Zhu. Effects of Slow-Released Nitrogen Fertilizer Application on Photosynthetic Characteristics and Yield in Brassica napus (Fengyou 10) [J]. Crops, 2018, 34(2): 136-140.
[2] Huimin Sun,Shuwen Zheng,Wei Zheng,Anping Wang,Guanping Feng,Shihua Duan,Zhuo Zheng. Study on Photosynthetic Characteristics and Grain Filling Characteristics of Large Panicle Type Rice Variety 7-37 [J]. Crops, 2016, 32(5): 38-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!