Crops ›› 2022, Vol. 38 ›› Issue (2): 167-173.doi: 10.16035/j.issn.1001-7283.2022.02.023

Previous Articles     Next Articles

Effects of Different Top Pruning Layers at Flowering Stage on Agronomic Traits and Yield of Broad Bean

Yuan Jingya(), Li Wanming, Pang Xueqin, Huang Linhua, Qi Lan, Wang Shengmou, Xie Zhengwei, Qiu Yibiao, Lai Quanhao, Qin Nana()   

  1. Dazhou Academy of Agricultural Sciences, Dazhou 635000, Sichuan, China
  • Received:2021-04-21 Revised:2022-02-12 Online:2022-04-15 Published:2022-04-24
  • Contact: Qin Nana E-mail:365927170@qq.com;2249183768@qq.com

Abstract:

Two broad bean varieties were treated with top pruning at flowering stage and the differences of main agronomic traits and yield were evaluated. The optimal layer number of top pruning treatments was put forward to provide a scientific basis for the high-yield and efficient cultivation of broad bean. The results showed that, with the number of top pruning layers increased, plant height of broad bean increased gradually; pods per plant, number of branches (Dacan 1), number of effective branches, and 100-seed weight first increased and then decreased; first-pod height, seeds per pod, number of branches (Chenghu 15), nodes of the main stem, and pod length were not affected by top pruning. The yield also increased first and then decreased and yield reached the maximum when the number of top pruning layer was eight. Correlation analysis showed yield of broad bean had a significant positive correlation (P < 0.05) with 100-seed weight, number of effective branches, and pods per plant; plant height and 100-seed weight also had significant positive correlation (P < 0.05). Regression analysis showed the relationship between top pruning layers and yield were a downward parabola and the optimal layer of top pruning was the eighth or ninth layer.

Key words: Broad bean, Yield, Top pruning, Agronomic trait

Fig.1

Effects of different top pruning treatment on plant height at flowering stage Different small letters indicate significant difference between treatments (P < 0.05), the same below"

Fig.2

Effects of different top pruning treatment on first-pod height at flowering stage"

Fig.3

Effects of different top pruning treatment on the number of branches at flowering stage"

Fig.4

Effects of different top pruning treatment on nodes of main stem at flowering stage"

Fig.5

Effects of different top pruning treatment on pod length at flowering stage"

Table 1

Effects of different top pruning treatment at flowering stage on yield trait"

品种-年份
Varity-year
处理
Treatment
单株总荚数
Pods per plant
有效分枝数
Effective branch
单荚粒数
Seeds per pod
百粒重
100-seed weight (g)
成胡15-2019年
Chenghu 15 in 2019
CK 10.61±4.04ab 2.81±0.79b 2.41±0.51a 99.60±0.91a
A 9.78±1.84b 3.24±0.43b 2.44±0.54a 72.24±0.45d
B 10.43±1.32ab 3.28±0.42ab 2.42±0.83a 73.10±0.56d
C 11.05±3.05a 3.51±1.07ab 2.40±0.48a 75.78±0.10c
D 11.36±2.39a 3.61±0.82a 2.30±1.00a 77.82±0.33b
E 10.59±2.02ab 3.44±0.76ab 2.58±0.41a 75.81±0.55c
F 10.04±2.04b 3.31±0.76ab 2.64±0.38a 72.78±0.30d
成胡15-2020年
Chenghu 15 in 2020
CK 6.03±5.32e 3.39±0.51ab 2.40±0.51a 103.56±0.71a
A 9.69±1.50d 2.76±0.48b 2.21±0.52a 71.20±0.52d
B 10.43±4.76cd 3.01±0.41b 2.24±0.43a 72.31±1.04cd
C 11.77±4.17c 3.43±1.32ab 2.19±0.45a 76.43±0.67b
D 14.81±5.09a 3.92±0.46a 2.17±0.41a 77.94±1.33b
E 13.03±5.64b 3.61±0.51ab 2.18±0.41a 76.30±0.34b
F 11.32±3.03c 3.39±0.81ab 2.00±0.36a 74.12±0.41c
达蚕1号-2020年
Dacan 1 in 2020
CK 18.21±7.92e 4.03±1.45ab 2.40±0.45a 68.62±0.40a
A 25.83±6.81d 2.71±0.41c 2.61±1.26a 55.45±0.44e
B 26.42±3.75d 2.94±0.79c 2.45±0.42a 55.78±0.56e
C 29.28±9.87c 3.31±0.00bc 2.58±0.51a 60.78±0.22d
D 35.76±6.79a 4.75±0.42a 2.81±0.00a 66.23±0.44b
E 32.21±2.72b 3.91±0.82b 2.64±0.00a 63.60±0.81c
F 31.84±4.41bc 3.68±0.51b 2.63±0.00a 61.81±0.64cd

Table 2

Correlation analysis between yield traits and yield of broad bean"

品种-年份
Varity-year
单株总荚数
Pods per
plant
有效分枝数
Effective
branch
单荚粒数
Seeds
per pod
百粒重
100-seed
weight
成胡15-2019年
Chenghu 15 in 2019
0.90* 0.86* -0.76 0.86*
成胡15-2020年
Chenghu 15 in 2020
0.85* 0.94** -0.35 0.83*
达蚕1号-2020年
Dacan 1 in 2020
0.93** 0.87* 0.60 0.96**

Table 3

Correlation analysis of different traits for Chenghu 15 and Dacan 1 with different top pruning number"

品种-年份
Variety-year
性状
Trait
株高
Plant
height
始荚高度
First-pod
height
总分枝数
Number of
branches
有效分枝数
Number of
effective branch
单株总荚数
Pods per
plant
单荚粒数
Seeds
per pod
主茎节数
Nodes of
main stem
荚长
Pod
length
成胡15-2019年
Chenghu 15 in 2019
始荚高度 0.71
总分枝数 -0.15 -0.31
有效分枝数 -0.63 -0.63 0.36
单株总荚数 0.44 0.15 -0.25 -0.79**
单荚粒数 -0.39 0.09 0.17 0.42 -0.44
主茎节数 0.08 -0.07 0.33 -0.48 0.50 -0.43
荚长 0.18 -0.35 -0.02 -0.35 0.83* -0.46 0.34
百粒重 0.89** 0.86** -0.12 -0.51 0.10 -0.21 0.05 -0.27
成胡15-2020年
Chenghu 15 in 2020
始荚高度 -0.57
总分枝数 -0.42 0.50
有效分枝数 -0.45 0.35 0.87*
单株总荚数 -0.42 -0.14 0.05 0.13
单荚粒数 -0.56 0.36 0.78* 0.95** 0.00
主茎节数 0.02 -0.36 0.13 0.10 0.83* -0.12
荚长 -0.49 0.24 0.55 0.47 0.77* 0.30 0.78*
百粒重 0.78* -0.46 0.07 0.03 -0.61 -0.02 -0.12 -0.40
达蚕1号-2020年
Dacan 1 in 2020
始荚高度 -0.11
总分枝数 -0.04 0.68
有效分枝数 0.24 0.06 -0.31
单株总荚数 -0.46 -0.29 -0.37 0.56
单荚粒数 0.18 0.22 0.36 0.44 0.41
主茎节数 -0.43 -0.28 -0.69 0.22 0.62 0.05
荚长 0.67 -0.51 -0.50 0.60 0.25 0.18 0.00
百粒重 0.92** -0.40 -0.26 0.41 -0.18 0.19 -0.28 0.83*

Table 4

Effects of different top pruning treatment on broad bean yield at flowering stage"

品种-年份
Variety-year
处理
Treatment
小区产量
Yield per
plot (kg)
产量
Yield
(kg/hm2)
产量排名
Yield
ranking
成胡15-2019年
Chenghu 15 in 2019
CK 3.65 1825.50eD 6
A 4.10 2050.50bcBC 4
B 4.15 2076.00bcBC 3
C 4.35 2176.50bAB 2
D 4.65 2326.50aA 1
E 4.15 2076.00bcBC 3
F 3.90 1951.50ceCD 5
成胡15-2020年
Chenghu 15 in 2020
CK 4.40 2201.10aA 4
A 2.72 1360.65aA 6
B 3.12 1560.75aA 7
C 3.68 1840.95aA 5
D 4.68 2341.20bB 1
E 4.52 2261.10cB 2
F 4.44 2221.05cC 3
达蚕1号-2020年
Dacan 1 in 2020
CK 5.67 2834.70aA 3
A 3.84 1917.60aA 6
B 4.00 2001.00aA 5
C 5.34 2668.05abAB 4
D 6.00 3001.50bB 1
E 5.84 2918.10cC 2
F 5.84 2918.10cC 2

Fig.6

Regression curves between broad bean yield and the number of top pruning layers at flowering stage a, b and c are regression curves of Chenghu 15 in 2019, Chenghu 15 in 2020 and Dacan 1 in 2020, respectively"

[1] 郑卓杰. 中国食用豆类学. 北京: 中国农业出版社, 1997:141-166.
[2] 吕春雨, 廖芳丽, 陈宏伟, 等. 41份非洲地区和我国湖北蚕豆种质资源产量性状的鉴定与评价. 南方农业学报, 2018, 49(12):2356-2363.
[3] 郭兴莲, 刘玉皎. 蚕豆育种研究进展及展望. 北方园艺, 2008(11):61-63.
[4] 马钰, 宗绪晓. 蚕豆SSR标记的开发及遗传连锁图谱的构建. 北京: 北京农业科学院, 2012.
[5] 缪士毅. 立夏时节蚕豆鲜. 养生月刊, 2020, 41(6):74-75.
[6] Fazio A, La Torre C, Dalena F, et al. Screening of glucan and pectin contents in broad bean (Vicia faba L.) pods during maturation. European Food Research and Technology, 2020, 246(2):333-347.
doi: 10.1007/s00217-019-03347-4
[7] 王海飞, 宗绪晓. 蚕豆种质资源,抗病育种和QTL定位及抗逆性研究进展. 植物遗传资源学报, 2011, 12(2):259-270.
[8] 马召林, 侯雪琪, 高占民. 食用豆类作物及其栽培技术. 现代化农业, 1995(3):13-15.
[9] Kahlel A, Ghidan A, Al-Antary T, et al. Effects of nanotechnology liquid fertilizers on certain vegetative growth of broad bean (Vicia faba L.). Fresenius Environmental Bulletin, 2020, 29(6):4763-4768.
[10] Min Y, Cao W, Xiong Y, et al. Formaldehyde assimilation through coordination of the glyoxylate pathway and the tricarboxylic acid cycle in broad bean roots. Plant Physiology Biochemistry, 2019, 138(7):65-79.
doi: 10.1016/j.plaphy.2019.02.019
[11] 王利英. 室内甲醛污染的植物响应,监测与净化. 南宁:广西大学, 2007.
[12] 张淑娟, 黄耀棠. 利用植物净化室内甲醛污染的研究进展. 生态环境学报, 2010, 19(12):3006-3013.
[13] 俞世蓉, 张道球. 蚕豆栽培生物学基础的研究 Ⅱ. 生殖生长期中现蕾,开花,结荚,成熟过程. 江苏农业科学, 1981, 1(6):30-35.
[14] 郭青范, 王林成, 赵万千. 花期摘心打尖对鲜食春蚕豆产量构成因子的影响. 作物杂志, 2018(4):93-94.
[15] 夏明忠. 遮光对蚕豆花荚形成和脱落的影响. 植物生态学与植物学学报, 1989(2):171-179.
[16] 巫朝福, 吴淑琴. 蚕豆打顶对籽粒产量的效应研究. 耕作与栽培, 1993(3):30-31.
[17] 刘云华. 蚕豆摘心试验初报. 中国种业, 2005(4):51.
[18] 黄云彭. 蚕豆打顶摘心效果试验. 浙江农业科学, 1987(1):12-14.
[19] 宗绪晓. 蚕豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
[20] 禹代林, 边巴, 陈洪伟. 蚕豆在生育后期打顶对产量影响的研究. 西藏农业科技, 2006, 28(3):20-22,7.
[21] 沈学善, 屈会娟, 周全卢, 等. 西充县旱地蚕豆-有机甘薯高效种植新模式效益分析. 湖北农业科学, 2020, 59(3):25-28.
[22] 杨勇, 周斌, 欧阳裕元, 等. 秋播蚕豆产量构成因子的初步分析. 中国农学通报, 2015(27):104-107.
[1] Wang Jian, Xu Ailing, Yang Na, Wang Ke, Xi Jilong, Wei Xiaodong, Zhang Jiancheng, Xi Tianyuan. Risk Assessment of Dry-Hot Wind in Different Sowing Dates of Wheat in Yuncheng Basin [J]. Crops, 2022, 38(2): 104-112.
[2] Hao Ruixuan, Sun Min, Ren Aixia, Lin Wen, Wang Peiru, Han Xuyang, Wang Qiang, Gao Zhiqiang. Research on the Relationship between Water Use and Dry Matter Accumulation and Quality of Wide Space Sowing Winter Wheat and the Regulation of Sowing Density [J]. Crops, 2022, 38(2): 119-126.
[3] Zhou Yuzhuang, Wang Rui, Yao Zhaosheng, Zhang Weijun, Liu Tao, Sun Chengming. Effects of Different Soil Surface Structures on Wheat Growth, Development and Yield [J]. Crops, 2022, 38(2): 127-133.
[4] Ma Ruiqi, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Topdressing Nitrogen Rates on Yield and Photosynthetic Performance of Different Quality Types of Wheat [J]. Crops, 2022, 38(2): 134-142.
[5] Cao Liru, Lu Xiaomin, Wang Guorui, Dang Zun, Qiu Tian, Qiu Jianjun, Tian Yunfeng, Wang Zhenhua, Dang Yongfu. Effects of Foliar Spraying with Carbon-Adsorbed Polyglutamic Acid on Growth and Development of Maize [J]. Crops, 2022, 38(2): 158-166.
[6] Liu Panfeng, Qin Jie, Hao Shuangnan, Wang Danli, Yang Wude, Feng Meichen, Song Xiaoyan. Effects of Selenium Concentration, Application Stage and Method on Yield and Grain Selenium Content of Different Millet Varieties [J]. Crops, 2022, 38(2): 182-188.
[7] Guo Yongxin, Zhou Hao, Sun Peng, Wang Yaqing, Ma Ke, Li Xiaorui, Dong Shuqi, Guo Pingyi, Yuan Xiangyang. Effects of Planting Patterns on Lodging Resistance and Yield of Zhangza 10 in Different Ecological Areas [J]. Crops, 2022, 38(2): 195-202.
[8] Li Feng, Gao Tongmei, Su Xiaoyu, Wei Libin, Wang Dongyong, Tian Yuan, Li Tongke, Yang Zihao, Wei Shuangling. Effects of Nitrogen Rate and Planting Density on Photosynthetic Rate, Yield, Nitrogen Use Efficiency of Sesame [J]. Crops, 2022, 38(2): 215-221.
[9] Han Lijun, Xue Zhangyi, Xie Hao, Gu Junfei. Effects of Dry-Wet Alternate Irrigation and Nitrification Inhibitor on Rice Yield and Soil Properties [J]. Crops, 2022, 38(2): 222-229.
[10] Zhao Lirong, Ma Ke, Zhang Liguang, Tang Sha, Yuan Xiangyang, Diao Xianmin. Analysis of Agronomic Traits and Quality of Foxtail Millet Varieties in Different Ecological Regions [J]. Crops, 2022, 38(2): 44-53.
[11] Gong Dan, Luo Gaoling, Zhang Xiaoyan, Zhu Xu, Yin Zhengong, Wang Suhua, Sha Aihua, Wang Lixia. Assessment of Adaptability for 34 New Cultivars of Cowpea under Different Eco-Environments [J]. Crops, 2022, 38(2): 89-95.
[12] Fang Mengying, Yan Peng, Lu Lin, Wang Qingyan, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium on Nitrogen Metabolism and Yield of Summer Maize under Different Nitrogen Levels [J]. Crops, 2022, 38(2): 96-103.
[13] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[14] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[15] He Yuxuan, Li Yajuan, Zhou Mingzhuo, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System [J]. Crops, 2022, 38(1): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!