Crops ›› 2022, Vol. 38 ›› Issue (2): 174-181.doi: 10.16035/j.issn.1001-7283.2022.02.024

Previous Articles     Next Articles

Effects of Combined Application of Nitrogen, Phosphorus, and Potassium Compound Fertilizer and Bacillus sp. KTS-1-1 on Physiological Characteristics, Biomass and Quality of Pseudostellaria heterophylla

Jiao Songlin(), Ren Jianguo, Ouyang Hu, Ni Xianchun, Tian Maosong, Wang Junli()   

  1. School of Public Health, Guizhou Medical University/Key Laboratory of Enviromental Pollution Monitoring and Disease Control, Ministry of Education/Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang 550025, Guizhou, China
  • Received:2021-05-07 Revised:2021-07-22 Online:2022-04-15 Published:2022-04-24
  • Contact: Wang Junli E-mail:1542849350@qq.com;411395583@qq.com

Abstract:

In order to explore the effects of different ratios of NPK compound fertilizer combined with Bacillus sp. KTS-1-1 bacterial suspension on the physiological characteristics, biomass and quality of Pseudostellaria heterophylla, this study used P. heterophylla ‘Sanhong No.1’ as the material for pot experiment. The experiments including six treatments were designed as followings: CK (tap water), T1 (2.00g NPK compound fertilizer tap water solution), T2 (3×108 CFU/mL Bacillus sp. KTS-1-1 bacterial suspension), T3 (0.25g of NPK compound fertilizer+3×108 CFU/mL Bacillus sp. KTS-1-1 bacterial suspension), T4 (0.50g of NPK compound fertilizer+3×108 CFU/mL Bacillus sp. KTS-1-1 bacterial suspension), T5 (1.00g of NPK compound fertilizer+3×108 CFU/mL Bacillus sp. KTS-1-1 bacterial suspension). The results showed that, compared with CK treatment, T2, T3, and T4 treatments could significantly improve leaf nutrient element content and leaf defense enzyme activity, increase biomass and the contents of polysaccharide, amino acid, calcium and cobalt in roots, especially for T4 treatment being the most obvious one in the promoting effect. Compared with CK treatment, the contents of nitrogen, phosphorus, and potassium in leaves significantly increased by 82.14%, 54.55% and 94.16% respectively, the activities of SOD, PAL and POD in leaves by 50.20%, 19.72% and 40.24% respectively, plant height, average leaf area, fresh root weight, and dry root weight by 10.20%, 28.05%, 70.62% and 54.95%, respectively and the contents of polysaccharides, amino acids, calcium, and cobalt in tuber roots by 35.38%, 68.14%, 29.17% and 21.56% respectively were observed in T4 treatment. Additionally, compared with T1 treatment, T4 treatment also had the significant promoting effects on leaf nutrient element contents, leaf defense enzyme activities and root biomass. In summary, T4 was the recommended method of fertilizer application in the production of P. heterophylla.

Key words: NPK compound fertilizer, Plant growth promoting rhizobacteria, Pseudostellariae heterophylla, Biomass, Quality

Table 1

The scheme design on the application of NPK compound fertilizer and Bacillus sp. KTS-1-1 (3×108 CFU/mL)"

处理
Treatment
组分Component 总体积
Total volume (mL)
KTS-1-1 (mL) 氮磷钾复合肥NPK compound fertilizer (g) 自来水Tap water (mL)
CK 0 0.00 200 200
T1 0 2.00 200 200
T2 200 0.00 0 200
T3 200 0.25 0 200
T4 200 0.50 0 200
T5 200 1.00 0 200

Fig.1

Effects of the application of NPK compound fertilizer and Bacillus sp. KTS-1-1 bacterial suspension on nutrient elements content in leaves of P.heterophylla Different lowercase letters mean significant differences at P<0.05 level among different treatments, the same below"

Fig.2

Effects of the application of NPK compound fertilizer and Bacillus sp. KTS-1-1 bacterial suspension on the activities of defense enzymes in leaves of P.heterophylla"

Fig.3

Cluster analysis of the application of NPK compound fertilizer and Bacillus sp. KTS-1-1 bacterial suspension on the activities of defense enzymes in leaves of P.heterophylla"

Table 2

Effects of the application of NPK compound fertilizer and Bacillus sp.KTS-1-1 bacterial suspension on the biomass of P.heterophylla"

处理
Treatment
株高
Plant height (cm)
平均叶面积
Average leaf area (cm2)
块根鲜重
Fresh root weight (g)
块根干重
Root dry weight (g)
CK 15.88±0.26b 4.42±0.18c 18.38±0.44e 5.55±0.23e
T1 17.23±0.20a 5.36±0.20ab 29.08±0.54b 7.79±0.34b
T2 17.35±0.28a 5.25±0.19b 22.55±0.60d 6.53±0.26d
T3 17.98±0.29a 5.98±0.19a 26.88±0.52c 7.49±0.25bc
T4 17.50±0.25a 5.66±0.20ab 31.36±0.58a 8.60±0.19a
T5 17.02±0.33a 5.60±0.13ab 23.64±0.73d 6.84±0.24cd

Table 3

Effects of the application of NPK compound fertilizer and Bacillus sp. KTS-1-1 bacterial suspension on the contents of polysaccharides,saponins and amino acids in the roots of P. heterophylla"

处理Treatment 多糖Polysaccharide (%) 皂苷Saponin (%) 氨基酸Amino acid (μmol/g)
CK 5.37±0.08c 1.37±0.01ab 45.92±4.45c
T1 6.69±0.32b 1.36±0.02ab 115.31±5.40a
T2 5.62±0.14c 1.38±0.03ab 60.20±6.56bc
T3 8.22±0.38a 1.30±0.03b 74.49±3.58b
T4 7.27±0.04b 1.33±0.03b 77.21±3.35b
T5 7.31±0.33b 1.49±0.05a 52.72±5.01c

Table 4

Effects of the application of NPK compound fertilizer and Bacillus sp. KTS-1-1 bacterial suspension on the contents of mineral elements in the roots of P.heterophylla mg/kg"

处理Treatment 钙Calcium 镁Magnesium 铁Iron 锰Manganese 铜Copper 锌Zinc 钴Cobalt
CK 1 636.47±25.58b 1 020.84±13.54b 412.70±6.20a 97.47±4.44a 5.69±0.01a 30.59±1.13a 8.72±0.29c
T1 2 005.71±56.72a 1 076.05±9.44ab 407.95±7.29a 88.44±6.85a 6.66±0.48a 30.99±2.78a 10.11±0.24ab
T2 2 163.77±40.41a 1 116.01±26.50a 424.97±8.94a 92.75±2.83a 7.03±0.40a 31.41±1.93a 9.53±0.30b
T3 2 036.75±39.31a 1 062.97±27.69ab 430.02±3.27a 87.45±4.38a 5.86±0.41a 30.40±0.84a 10.45±0.23a
T4 2 113.75±45.46a 1 047.31±19.22ab 414.48±10.32a 95.93±4.16a 6.13±0.16a 30.96±1.27a 10.60±0.14a
T5 2 151.75±40.14a 1 079.30±14.58ab 408.35±7.98a 89.15±3.47a 6.00±0.15a 31.39±1.82a 11.04±0.05a
[1] Gyaneshwar P, Kumar G N, Parekh L J, et al. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 2002, 245(1):83-93.
doi: 10.1023/A:1020663916259
[2] Gupat G, Parihar S S, Ahirwar N K, et al. Plant growth promoting rhizobacteria (PGPR):current and future prospects for development of sustainable agriculture. Journal of Microbial and Biochemical Technology, 2015, 7(2):96-102.
[3] Vejan P, Abdullah R, Khadiran T, et al. Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules, 2016, 21(5):573-589.
doi: 10.3390/molecules21050573
[4] Gouda S, Kerry R G, Das G, et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 2018, 206:131-140.
doi: 10.1016/j.micres.2017.08.016
[5] Habibi S, Djedidi S, Ohkama-Ohtsu N, et al. Isolation and screening of indigenous plant growth-promoting rhizobacteria from different rice cultivars in Afghanistan soils. Microbes and Environments, 2019, 34(4):347-355.
doi: 10.1264/jsme2.ME18168
[6] 娄义, 郭俏, 彭楚, 等. 3株芽孢杆菌对番茄的促生作用及对番茄根域微生物的影响. 应用生态学报, 2018, 29(1):260-268.
[7] 朱忠彬, 吴秉奇, 丁延芹, 等. 短短芽孢杆菌 DZQ3对烟草的促生及系统抗性诱导作用. 中国烟草科学, 2012, 33(3):92-96.
[8] 宋叶, 林东, 梅全喜, 等. 太子参化学成分及药理作用研究进展. 中国药师, 2019, 22(8):1506-1510.
[9] Guo R, Wei W, Wang Y L, et al. Protective effects of Radix Pseudostellariae extract against retinal laser injury. Cellular Physiology and Biochemistry, 2014, 33(6):1643-1653.
doi: 10.1159/000362947 pmid: 24902809
[10] Fang Z, Duan X, Zhao J, et al. Novel polysaccharide H-2 from Pseudostellaria heterophylla alleviates type 2 diabetes mellitus. Cellular Physiology and Biochemistry, 2018, 49(3):1037-1047.
doi: 10.1159/000493284
[11] 荣良燕, 姚拓, 马文彬, 等. 岷山红三叶根际优良促生菌对其宿主生长和品质的影响. 草业学报, 2014, 23(5):231-240.
[12] Molla A H, Haque M M, Haque M A, et al. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agricultural Research, 2012, 1(3):265-272.
doi: 10.1007/s40003-012-0025-7
[13] 任建国, 王俊丽. 太子参土壤固氮菌与解钾菌的分离、筛选及鉴定. 西南师范大学学报(自然科学版), 2015, 40(2):59-65.
[14] 秦民坚, 余永邦, 黄文哲, 等. 不同产地太子参的品质分析. 现代中药研究与实践, 2005, 19(5):29-32.
[15] 林茂, 郑炯, 杨琳, 等. 不同产地太子参中化学成分分析. 食品科学, 2012, 33(2):204-207.
[16] Liu D, Yang Q, Ge K, et al. Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil. Brazilian Journal of Microbiology, 2017, 48(4):656-670.
doi: S1517-8382(16)30635-9 pmid: 28645648
[17] Zahid M, Abbasi M K, Hameed S, et al. Isolation and identification of indigenous plant growth promoting rhizobacteria from himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Frontiers in Microbiology, 2015, 6:207-216.
[18] Rais A, Jabeen Z, Shair F, et al. Bacillus spp.,a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS ONE, 2017, 12(11):187412-187428.
[19] Shaharoona B, Naveed M, Arshad M, et al. Fertilizer-dependent efficiency of Pseudomonads for improving growth,yield,and nutrient use efficiency of wheat (Triticum aestivum L.). Applied Microbiology and Biotechnology, 2008, 79(1):147-155.
doi: 10.1007/s00253-008-1419-0 pmid: 18340443
[20] 李瑞霞.贵州木霉NJAU4742对矿质元素的活化及对番茄的促生效果研究. 南京:南京农业大学, 2016.
[21] Karlidag H, Esitken A, Turan M, et al. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield,growth and nutrient element contents of leaves of apple. Scientia Horticulturae, 2007, 114(1):16-20.
doi: 10.1016/j.scienta.2007.04.013
[22] Miransari M. Soil microbes and the availability of soil nutrients. Acta Physiologiae Plantarum, 2013, 35(11):3075-3084.
doi: 10.1007/s11738-013-1338-2
[23] Yildirim E, Karlidag H, Turan M, et al. Growth,nutrient uptake,and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. HortScience, 2011, 46(6):932-936.
doi: 10.21273/HORTSCI.46.6.932
[24] Zhao Q, Wu Y N, Fan Q, et al. Improved growth and metabolite accumulation in Codonopsis pilosula (Franch.) Nannf. by inoculation of Bacillus amyloliquefaciens GB03. Journal of Agricultural and Food Chemistry, 2016, 64(43):8103-8108.
pmid: 27723315
[25] 李文倩, 张莹, 王梦茹, 等. 不同施肥配比对蒙古黄芪产量及品质的影响. 草地学报, 2020, 28(1):221-229.
[26] Anthony P, Malzer G, Sparrow S, et al. Soybean yield and quality in relation to soil properties. Agronomy Journal, 2012, 104(5):1443-1458.
doi: 10.2134/agronj2012.0095
[27] Vessey J K. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 2003, 255(2):571-586.
doi: 10.1023/A:1026037216893
[28] De-Bashan L E, Hernandez J P, Bashan Y. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation-a comprehensive evaluation. Applied Soil Ecology, 2012, 61:171-189.
doi: 10.1016/j.apsoil.2011.09.003
[29] Liu F C, Xing S J, Ma H L, et al. Plant growth-promoting rhizobacteria affect the growth and nutrient uptake of Fraxinus americana container seedlings. Applied Microbiology and Biotechnology, 2013, 97(10):4617-4625.
doi: 10.1007/s00253-012-4255-1
[30] 栾换换. 促生菌与氮和磷配施对红小豆生长发育的影响. 临汾:山西师范大学, 2018.
[31] 张朝辉. PGPR菌肥在烤烟漂浮育苗及烤烟生产中的应用研究. 郑州:河南农业大学, 2010.
[32] Akbari P, Ghalavand A, Sanavy A M M, et al. Comparison of different nutritional levels and the effect of plant growth promoting rhizobacteria (PGPR) on the grain yield and quality of sunflower. Australian Journal of Crop Science, 2011, 5(12):1570-1576.
[33] Nascente A S, Lanna A C, De Sousa T P, et al. N fertilizer dose-dependent efficiency of Serratia spp. for improving growth and yield of upland rice (Oryza sativa L.). International Journal of Plant Production, 2019, 13(3):217-226.
doi: 10.1007/s42106-019-00049-5
[34] Chen X, Wang J, Wang Z, et al. Optimized nitrogen fertilizer application mode increased culms lignin accumulation and lodging resistance in culms of winter wheat. Field Crops Research, 2018, 228:31-38.
doi: 10.1016/j.fcr.2018.08.019
[35] Shin R, Berg R H, Schachtman D P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen,phosphorus and potassium deficiency. Plant and Cell Physiology, 2005, 46(8):1350-1357.
doi: 10.1093/pcp/pci145
[36] Kováčik J, Bačkor M. Changes of phenolic metabolism and oxidative status in nitrogen-deficient Matricaria chamomilla plants. Plant and Soil, 2007, 297(1):255-265.
doi: 10.1007/s11104-007-9346-x
[1] Hao Ruixuan, Sun Min, Ren Aixia, Lin Wen, Wang Peiru, Han Xuyang, Wang Qiang, Gao Zhiqiang. Research on the Relationship between Water Use and Dry Matter Accumulation and Quality of Wide Space Sowing Winter Wheat and the Regulation of Sowing Density [J]. Crops, 2022, 38(2): 119-126.
[2] Zhou Yuzhuang, Wang Rui, Yao Zhaosheng, Zhang Weijun, Liu Tao, Sun Chengming. Effects of Different Soil Surface Structures on Wheat Growth, Development and Yield [J]. Crops, 2022, 38(2): 127-133.
[3] Ma Ruiqi, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Topdressing Nitrogen Rates on Yield and Photosynthetic Performance of Different Quality Types of Wheat [J]. Crops, 2022, 38(2): 134-142.
[4] Lu Dandan, Ye Miao, Zhang Zujian. Research Progress on Rice Protein and Its Components and Their Effects on Rice Quality [J]. Crops, 2022, 38(2): 28-34.
[5] Zhao Lirong, Ma Ke, Zhang Liguang, Tang Sha, Yuan Xiangyang, Diao Xianmin. Analysis of Agronomic Traits and Quality of Foxtail Millet Varieties in Different Ecological Regions [J]. Crops, 2022, 38(2): 44-53.
[6] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[7] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[8] Cui Shiyou, Zhang Yang, Zhai Caijiao, Dong Shiqi, Zhang Jiao, Chen Pengjun, Han Jijun, Dai Qigen. Performance of Yield and Quality of Japonica Rice under Brackish Water Irrigation on the Reclaimed Tidal Flat [J]. Crops, 2022, 38(1): 137-141.
[9] Bai Junbing, Wang Yanjie, Wang Demei, Yang Yushuang, Wang Yujiao, Guo Dandan, Liu Zhewen, Chang Xuhong, Shi Shubing, Zhao Guangcai. Response of Yield and Quality of Strong Gluten Wheat to Different Soil Conditions and Nitrogen Levels [J]. Crops, 2022, 38(1): 167-173.
[10] Li Runqing, Shen Yong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang. Effects of Nitrogen Application Rates on the Grain Yield, Starch RVA Profile Characteristics and Physicochemical Properties of Super Rice Nanjing 9108 [J]. Crops, 2022, 38(1): 205-212.
[11] Feng Sufen, Liu Yuanjian, Xu Ruiqi, Zhang Wei. Analysis on Main Traits of Fresh Corn Varieties Recently Approved in Yunnan Province [J]. Crops, 2022, 38(1): 220-226.
[12] Zhang Shengquan, Ye Zhijie, Ren Liping, Gao Xinhuan, Wang Zheng, Yang Yongli, Mu Lei, Dong Yanhua, Chen Zhaobo. Analysis of Authorized Hybrid Wheat Varieties in China since The Tenth Five-Year Plan [J]. Crops, 2022, 38(1): 38-43.
[13] Gao Fengyun, Siqin Bateer, Zhou Yu, Jia Xiaoyun, Su Shaofeng, Zhao Xiaoqing, Jin Xiaolei. Association Analysis of Crude Fat and Fatty Acid Components in Flax Based on SSR Markers [J]. Crops, 2022, 38(1): 44-49.
[14] Song Quanhao, Jin Yan, Song Jiajing, Bai Dong, Zhao Lishang, Chen Jie, Zhu Tongquan. Evaluation the Breeding Utilizability of Synthetic Hexaploid Wheat in Huang-Huai Area [J]. Crops, 2022, 38(1): 56-64.
[15] Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!