Crops ›› 2024, Vol. 40 ›› Issue (1): 104-110.doi: 10.16035/j.issn.1001-7283.2024.01.014

Previous Articles     Next Articles

Responses of Forage Grass Ion Characteristics and Root Nutrients of the Cyperus esculentus to Different Planting Patterns at Different Growth Stages

Zhang Yulin1,2,3,4(), Du Yi2,3,4,5(), Chai Xutian2,3,4,5, Li Xiangyi2,3,4, Lu Yan2,3,4, Zhang Zhihao2,3,4(), Zeng Fanjiang1,2,3,4,5()   

  1. 1College of Ecology and Environment, Xinjiang University, Urumqi 830046, Xinjiang, China
    2Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences / Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Urumqi 830011, Xinjiang, China
    3State Key Laboratory of Desert and Oasis Ecology / Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands / Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    4Cele National Station of Observation and Research for Desert-Grassland Ecosystem, Cele 848300, Xinjiang, China
    5University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-11-22 Revised:2022-12-28 Online:2024-02-15 Published:2024-02-20
  • Contact: Zhang Zhihao,Zeng Fanjiang E-mail:zhangyl20201051213@163.com;duyi1996002001@163.com;zhangzh@ms.xjb.ac.cn;zengfj@ms.xjb.ac.cn

Abstract:

To explore the effects of different planting patterns on forage grass ion characteristics and nutrients content in root of Cyperus esculentus, a field experiment was carried out under C.esculentus continuous cropping (CC) and C.esculentus-wheat rotation cropping (RC). The changes of ion properties, root nutrient content and soil physicochemical properties of forage were measured and analyzed at early growth stage (S1), middle growth stage (S2), and mature stage (S3). The results showed that CC/RC and different growth stages had significant effects on the total phosphorus and total potassium of the root. Their interaction had significant effects on the forage grass ion characteristics (Cl, SO42-, Ca2+, K+, Na+ and Mg2+), but no significant effects on the contents of total phosphorus, total potassium, total nitrogen and crude protein in the roots. Under CC/RC mode, the total nitrogen, total phosphorus, total potassium, and crude protein of roots were decreased with three growth stages. The CC significantly increased the contents of Cl, SO42-, K+, and Na+ of the forage grass. The RC significantly reduced the content of ions (such as K+ and Na+) of forage grass, and did not increase the content of nutrients in roots. Therefore, CC is beneficial to the improvement of soil salinization, which is suitable for large-scale cultivation of salinized soil in Xinjiang.

Key words: Cyperus esculentus, Continuous cropping, Rotation cropping, Ion characteristics of forage grass, Nutrient content in roots

Fig.1

Effects of CC/RC and different growth stages on ionic properties of forage grass of the C.esculentus CC: continuous cropping; RC: rotation cropping. Different lowercase letters indicate that the same planting patterns and different growth stages have significant differences. Different uppercase letters indicate that the planting patterns has significant differences, unmarked indicates that the difference is not significant on planting patterns. The same below."

Table 1

Two-way ANOVA analysis of effects of the CC/RC and different growth stages on the ionic properties of forage grass of the C.esculentus"

处理Treatment df Cl (mg/g) SO42- (mg/g) Ca2+ (mg/g) K+ (mg/g) Mg2+ (mg/g) Na+ (mg/g)
连作/轮作(CC/RC) 1 50.43*** 2.37** 14.93** 147.49*** 0.81 110.51***
生育时期(S) 1 33.11*** 18.85*** 3.92* 124.21*** 6.54* 90.91***
连作/轮作×生育时期(CC/RC×S) 2 11.79*** 9.71** 4.58* 130.02*** 8.17** 67.64***

Fig.2

Effects of the CC/RC and different growth stages on nutrient contents in roots of the C.esculentus"

Table 2

Two-way ANOVA analysis of effects of the CC/RC and different growth stages on nutrient contents in roots of the C.esculentus"

处理
Treatment
df 全氮
Total nitrogen (g/kg)
全磷
Total phosphorus (g/kg)
全钾
Total potassium (g/kg)
粗蛋白
Crude protein (g/kg)
连作/轮作(CC/RC) 1 0.79 8.79* 21.49** 0.80
生育时期(S) 2 43.27*** 10.33** 188.38*** 43.16***
连作/轮作×生育时期(CC/RC×S) 2 0.59 3.74 2.64 0.59

Fig.3

Correlation analysis of forage grass ions, nutrient contents in roots, and soil physiochemical properties of the C.esculentus “*”shows significant correlation at the 0.05 level;“**”shows extremely significant correlation at the 0.01 level."

[1] Aljuhaimi F, Ghafoor K, Özcan M M, et al. The effect of solvent type and roasting processes on physicochemical properties of tigernut (Cyperus esculentus L.) tuber oil. Journal of Oleo Science, 2018, 67(7):823-828.
doi: 10.5650/jos.ess17281 pmid: 29877229
[2] 唐榕, 梁培鑫, 郭晨荔, 等. 盐碱胁迫对油莎豆幼苗生长和生理性状的影响. 浙江农业科学, 2022, 63(3):147-152.
[3] Pascual B, Maroto J V, Lopez-galarza S, et al. Chufa (Cyperus esculentus L.var. Sativus boeck): An unconventional crop. studies related to applications and cultivation. Economic Botany, 2000, 54(4):439-448.
doi: 10.1007/BF02866543
[4] Negbi M A. Sweetmeat plant, a perfume plant and their weedy relatives: A chapter in the history of Cyperus esculentus L. and C. rotundus L. Economic Botany, 1992, 46(1):64-71.
[5] 沈庆雷. 油莎豆高产优质栽培初步研究. 扬州:扬州大学, 2010.
[6] 张玉林, 杜艺, 柴旭田, 等. 不同种植模式和刈割时间对油莎豆块茎养分含量和营养品质的影响. 草地学报, 2022, 30(11):3148-3155.
doi: 10.11733/j.issn.1007-0435.2022.11.033
[7] 杨敏, 田丽萍, 薛琳. 不同油莎豆品种在新疆干旱气候区的产量表现与品质差异. 中国油料作物学报, 2013, 35(4):451-454.
doi: 10.7505/j.issn.1007-9084.2013.04.017
[8] Xiong W, Li Z G, Liu H J, et al. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing. PLoS ONE, 2015, 10(8):e0136946.
doi: 10.1371/journal.pone.0136946
[9] Li X G, Ding C F, Hua K, et al. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biology Biochemistry, 2014, 78:149-159.
doi: 10.1016/j.soilbio.2014.07.019
[10] Zhou X, Yu G, Wu F. Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield. European Journal of Soil Biology, 2011, 47 (5):279-287.
doi: 10.1016/j.ejsobi.2011.07.001
[11] Larkin R P. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biology & Biochemistry, 2003, 35(11):1451-1466.
doi: 10.1016/S0038-0717(03)00240-2
[12] Moulin A P, Buckley K E, Volkmar K. Soil quality as affected by amendments in bean-potato rotations. Canadian Journal Soil Science, 2015, 91(4):533-542.
doi: 10.4141/cjss10011
[13] 张文明, 邱慧珍, 刘星, 等. 连作对马铃薯根系形态及吸收能力的影响. 干旱地区农业研究, 2014, 32(1):34-37,46.
[14] Katsvairo T W, Wright D L, Marois J J, et al. Cotton roots, earthworms, and infiltration characteristics in Sod-Peanut-Cotton cropping systems. Agronomy Journal, 2007, 99(2):390-398.
doi: 10.2134/agronj2005.0330
[15] Veronica M R, Luis L B, Rafael L B. Faba bean root growth in a vertisol: Tillage effects. Field Crops Research, 2011, 120(3):338-344.
doi: 10.1016/j.fcr.2010.11.008
[16] 魏飞, 孙新展, 刘建国, 等. 连作棉田轮作苜蓿、小麦后对棉花光合能力和根系生长的影响. 江苏农业科学, 2019, 47(12):126-128.
[17] 贾文飞, 魏晓琼, 李林宇, 等. 盐碱处理对越橘生长形态、光合生理及离子含量的影响. 吉林农业大学学报,[2022-11-20]. http:kns.cnki.net/kcms/detail/22.1100.s.20220922.1231.002.html.
[18] 崔婷, 王勇, 吴万鑫, 等. 镉胁迫下草地早熟禾离子吸收及生理响应特征分析. 草原与草坪, 2022, 42(3):115-124.
[19] 张远兰, 胡鑫, 郁万文, 等. Na2SO4和Na2CO3胁迫对苦楝幼苗渗透调节特性和离子分配的影响. 中南林业科技大学学报, 2021, 41(4):76-85.
[20] 马志博, 陈蕊红, 贺傲兵, 等. 外源水杨酸对盐胁迫下酸枣幼苗生理特性及离子吸收的影响. 西北林学院学报, 2020, 35 (6):103-109.
[21] 张琳琳, 于明含, 丁国栋, 等. 盐碱胁迫对油沙豆生长和生理特性的影响. 中国水土保持科学(中英文), 2022, 20(2):65-71.
[22] 曹秭琦, 任永峰, 路战远, 等. 氮磷钾配施对油莎豆产量及肥料利用效率的影响. 中国油料作物学报, 2023, 45(2):368-377.
doi: 10.19802/j.issn.1007-9084.2022076
[23] 贺婷婷, 王旭哲, 宋磊, 等. 不同添加剂对油莎豆青贮品质及有氧稳定性的影响. 新疆农业科学, 2022, 59(7):1767-1775.
doi: 10.6048/j.issn.1001-4330.2022.07.024
[24] 丁雅, 杨建明, 李利, 等. 南疆盆地亏缺灌溉和覆膜对油莎豆生物量及产量的影响. 干旱区研究, 2022, 39(3):883-892.
[25] 沈雁, 杨伟波, 刘蕊, 等. 植物生长调节剂及不同温度处理对油莎豆块茎萌发的影响. 西南农业学报, 2010, 23(5):1464-1467.
[26] 李变变, 张凤华, 徐接亮, 等. 刈割对油莎豆碳氮积累以及产量和品质的影响. 干旱地区农业研究, 2022, 40(5):165-172.
[27] 梁培鑫, 唐榕, 郭晨荔, 等. 油莎豆对自然盐碱胁迫的生长及生理响应. 中国农学通报, 2022, 38(26):1-8.
doi: 10.11924/j.issn.1000-6850.casb2021-0862
[28] 阿尔祖古丽·亚森, 仙米西努尔·克里木. 莎车县各月农业气候资源特征及主要气象灾害分析. 现代农业科技, 2017(20):200.
[29] 朱俊岭, 师茜, 王小红, 等. 不同水分处理条件对油莎豆叶片生理指标及块茎品质的影响. 西南农业学报, 2016, 29(6):1276-1280.
[30] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000.
[31] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[32] Niu Y F, Chai R S, Lei J G, et al. Responses of root architecture development to low phosphorus availability: A review. Annals of Botany, 2013, 112(2):391-408.
doi: 10.1093/aob/mcs285 pmid: 23267006
[33] Craine J M. Competition for nutrients and optimal root allocation. Plant and Soil, 2006, 285(1/2):171-185.
doi: 10.1007/s11104-006-9002-x
[34] Hinsinger P, Betencourt E, Bernard L, et al. P for two, sharing a scarce resource: Soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiology, 2011, 156(3):1078-1086.
doi: 10.1104/pp.111.175331 pmid: 21508183
[35] 张玉林, 陆永兴, 尹本丰, 等. 模拟降雨变化对古尔班通古特沙漠土壤养分及酶活性的影响. 生态学报, 2022, 42(5):1-11.
[36] 张智勇, 董秀秀, 王绍明, 等. 不同连作障碍消减措施对新疆棉花根系形态生理特征的影响. 应用与环境生物学报, 2019, 25(4):918-925.
[37] 覃潇敏, 潘浩男, 肖靖秀, 等. 不同磷水平下玉米―大豆间作系统根系形态变化. 应用生态学报, 2021, 32(9):3223-3230.
doi: 10.13287/j.1001-9332.202109.023
[38] 王劲松, 樊芳芳, 郭珺, 等. 不同作物轮作对连作高粱生长及其根际土壤环境的影响. 应用生态学报, 2016, 27(7):2283-2291.
doi: 10.13287/j.1001-9332.201607.036
[39] Huang L, Zhang Z. Effect of rainfall pulses on plant growth and transpiration of two xerophytic shrubs in a revegetated desert area: Tengger Desert, China. Catena, 2016, 137:269-276.
doi: 10.1016/j.catena.2015.09.020
[40] 吴运荣, 林宏伟, 莫肖蓉. 植物抗盐分子机制及作物遗传改良耐盐性的研究进展. 植物生理学报, 2014, 50(11):1621-1629.
[41] Bell C W, Acosta-martinez V, Mcintyre N E, et al. Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan Desert grassland. Microbial Ecology, 2009, 58(4):827-842.
doi: 10.1007/s00248-009-9529-5 pmid: 19466479
[42] 杜艺, 邢鹏飞, 贾镇宁, 等. 北方农牧交错带赖草草地斑块的土壤化学计量特征对植物多样性的影响. 草地学报, 2020, 28 (3):808-814.
doi: 10.11733/j.issn.1007-0435.2020.03.027
[43] 马瑞瑞, 高小丽, 崔雯雯, 等. 芸豆连作田土壤酶活性和养分含量研究. 华北农学报, 2013, 28(5):157-162.
doi: 10.7668/hbnxb.2013.05.028
[44] 王长庭, 王根绪, 刘伟, 等. 植被根系及其土壤理化特征在高寒小嵩草草甸退化演替过程中的变化. 生态环境学报, 2012, 21(3):409-416.
[45] 杜艺, 翟鹏辉, 贾镇宁, 等. 天然草地土壤化学性质对氮磷添加响应的Meta分析. 草原与草坪, 2021, 41(1):76-82.
[46] Zhang L X, Bai Y F, Han X G. Application of N:P stoichiometry to ecology studies. Acta Botanica Sinica, 2003, 45(9):1009-1018.
[1] Ao Jincheng, Wang Zheng, Yang Qigang, Li Zhi, Wei Jianyu. Response of Soil Bacterial Community Structure and Functional Diversity to Flue-Cured Tobacco Continuous Cropping [J]. Crops, 2023, 39(6): 127-134.
[2] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[3] Luo Lei, Li Yajie, Yao Yanhong, Li Fengxian, Fan Yi, Dong Aiyun, Liu Huixia, Niu Caiping, Li Deming. Effects of Planting Small Whole Potatoes with Different Specifications and Seed Dressing on the Growth and Yield of Potatoes in Continuous Cropping Land [J]. Crops, 2021, 37(6): 211-216.
[4] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles [J]. Crops, 2019, 35(6): 1-7.
[5] Yong Cui. Influence of Continuous Cropping and Controlling Measures on Continuous Cropping Potato [J]. Crops, 2018, 34(2): 87-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!