Crops ›› 2024, Vol. 40 ›› Issue (1): 111-116.doi: 10.16035/j.issn.1001-7283.2024.01.015

Previous Articles     Next Articles

Effects of High Ridge Mulching Drip Irrigation on the Growth and Water Use of Sunflower in Moderate Saline-Alkali Land in Hetao Irrigation Region

Du Chao1(), Li Jun1(), Wang Gang1, Wu Xuerui1, Ren Zhiyuan1, Zhang Junfeng1, Bao Haizhu2(), Wen Aiqing1   

  1. 1Institute of Agriculture and Animal Husbandry Science of Bayannur City, Bayannur 015000, Inner Mongolia, China
    2Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2022-06-13 Revised:2022-12-27 Online:2024-02-15 Published:2024-02-20
  • Contact: Li Jun,Bao Haizhu E-mail:nkydc2015@163.com;lijun.6606@163.com;bhz2009@126.com

Abstract:

In Hetao irrigation region, the effects of high-ridge mulching drip irrigation on the growth, water use efficiency and yield of sunflower were studied in order to reduce the yield of sunflower due to the strong soil salt return, the growth potential difference of sunflower in a large number of moderately saline-alkali soil and physiological drought stress in the later period of growth. The results showed that, the leaf area index of sunflower was increased by high ridge mulching drip irrigation, which increased by 31.56% and 75.28% at flowering stage compared with plain mulching drip irrigation (CK1) and plain mulching without drip irrigation (CK2), respectively. The above ground dry matter accumulation was promoted by high ridge mulching drip irrigation, and the increase was the largest at filling stage, 35.03% and 100.62% higher than CK1 and CK2, respectively. Compared with CK1 and CK2, the root fresh weight increased by 71.86% and 199.23% at flowering stage, respectively. Compared with CK1 and CK2, the soil moisture content of 0-30 cm at flowering stage and filling stage increased by 7.51% and 21.77% at filling stage, respectively. The water use efficiency was increased by 21.20% and 42.34% compared with CK1 and CK2, respectively. Compared with CK1 and CK2, the yield was increased by 15.70% and 28.31%, showing significant effect. In conclusion, the high ridge mulching drip irrigation model has obvious soil moisture conservation effect in the later growth period of sunflower, can promote dry matter accumulation and increase yield, which is a suitable planting model for sunflower planting in saline-alkali soil.

Key words: Sunflower, Saline-alkali land, High ridge, Mulching drip irrigation

Fig.1

High ridge mulching drip irrigation planting diagram a: location of drip irrigation belt, b: width of the up ridge, c: ridge height, d: width of the bottom, e: center spacing between two ridges."

Fig.2

Conventional horizontal drip irrigation planting diagram a: small space, b: big space, c: location of drip irrigation belt."

Fig.3

Conventional planting diagram a: small space, b: big space."

Fig.4

Effects of planting patterns on LAI of sunflower"

Fig.5

Effects of planting patterns on dry matter accumulation in per plant of sunflower"

Table 1

Effects of planting patterns on root growth during the whole growth period of sunflower"

年份
Year
处理
Treatment
苗期Seedling stage 现蕾期Budding stage
根直径
Root
diameter (cm)
根深
Root depth
(cm)
单株根鲜重
Fresh root weight
per plant (g)
根直径
Root
diameter (cm)
根深
Root depth
(cm)
单株根鲜重
Fresh root weight
per plant (g)
2018 H1 12.50±0.26a 11.60±0.31a 9.86±0.46a 42.00±0.97a 23.45±0.73a 214.87±8.13a
CK1 11.50±0.45a 10.00±0.29a 7.98±0.49b 36.50±0.44b 17.65±0.59b 154.97±5.22b
CK2 11.00±0.90a 9.80±0.44a 7.27±0.54b 30.50±0.81c 15.90±0.50b 90.90±2.50c
2019 H1 10.00±0.43a 12.05±0.36a 12.86±0.50a 40.00±0.81a 22.50±0.85a 210.50±3.01a
CK1 9.50±0.26a 11.00±0.40a 10.77±0.46b 34.69±0.40b 18.00±0.33b 170.30±2.64b
CK2 9.00±0.30a 10.80±0.56a 8.43±0.43c 29.50±0.26c 17.50±0.10b 70.00±1.63c
2020 H1 12.00±0.54a 10.00±0.56a 7.90±0.34a 44.50±0.75a 24.00±0.78a 277.50±6.27a
CK1 11.70±0.34a 9.20±0.36ab 6.86±0.22ab 37.50±0.77b 21.00±0.77b 140.20±1.50b
CK2 9.80±0.43b 8.00±0.54b 6.11±0.49b 32.50±0.47c 18.00±0.51c 65.00±2.96c
2018-2020 较CK1增加 (%) 5.50 8.11 19.98 14.82 23.48 51.00
较CK2增加 (%) 15.77 14.16 40.39 32.43 36.09 211.14
2018 H1 50.00±0.64a 27.78±0.68a 427.60±8.19a 54.33±0.30a 30.67±0.29a 913.10±56.08a
CK1 43.67±0.52b 23.55±0.56b 270.17±7.56b 48.67±1.40b 25.75±0.47b 562.60±10.21b
CK2 38.83±0.87c 17.58±0.54c 163.63±3.43c 44.33±1.08c 20.33±0.31c 402.20±15.44c
2019 H1 47.00±0.48a 28.75±0.86a 370.50±2.71a 51.00±0.23a 31.50±0.28a 728.30±15.09a
CK1 44.00±0.46b 23.00±0.84b 240.80±9.66b 47.80±0.83b 24.00±0.80b 532.10±4.39b
CK2 35.50±0.63c 18.00±0.63c 120.60±2.49c 38.00±0.10c 18.50±0.30c 380.20±7.62c
2020 H1 45.90±0.48a 30.00±0.92a 562.30±12.20a 48.60±0.49a 35.00±0.59a 1160.00±50.00a
CK1 42.00±0.77b 26.58±1.11b 280.60±7.10b 45.50±1.21b 28.00±0.35b 818.50±8.77b
CK2 38.00±0.16c 19.00±0.51c 170.40±4.20c 39.00±0.71c 20.00±0.13c 638.40±10.98c
2018-2020 较CK1增加 (%) 10.20 18.32 71.86 8.42 24.98 46.42
较CK2增加 (%) 27.21 58.54 199.23 26.87 65.17 97.17

Table 2

Effects of planting patterns on soil water content in root layer of sunflower %"

年份Year 处理Treatment 苗期Seedling stage 现蕾期Budding stage 开花期Flowering stage 灌浆期Filling stage
2018 H1 23.55±0.05a 21.45±0.03a 20.06±0.06a 18.65±0.08a
CK1 22.49±0.08b 20.86±0.02b 18.45±0.03b 17.42±0.06b
CK2 22.38±0.04b 19.40±0.03c 17.43±0.02c 15.35±0.13c
2019 H1 22.10±0.18a 21.19±0.40a 21.58±0.04a 19.20±0.06a
CK1 20.78±0.05b 20.35±0.03b 20.38±0.03b 18.33±0.06b
CK2 20.41±0.05b 19.51±0.03c 18.23±0.07c 16.83±0.13c
2020 H1 22.34±0.32a 23.06±0.07a 19.23±0.06a 18.98±0.08a
CK1 21.67±0.07b 22.14±0.05b 18.07±0.11b 17.10±0.04b
CK2 21.50±0.08b 19.70±0.07c 16.13±0.04c 14.49±0.29c
2018-2020 较CK1增加 4.70 3.71 6.98 7.51
较CK2增加 5.76 12.10 17.53 21.77

Table 3

Effects of planting patterns on yield and water use efficiency of sunflower"

年份
Year
产量
Yield (kg/hm2)
耗水量
Water consumption (mm)
水分利用效率
Water use efficiency [kg/(hm2·mm)]
H1 CK1 CK2 较CK1增
加 (%)
较CK2增
加 (%)
H1 CK1 CK2 较CK1增
加 (%)
较CK2增
加 (%)
H1 CK1 CK2 较CK1增
加 (%)
较CK2增
加 (%)
2018 2922.60a 2517.30b 2082.75c 16.10 40.32 175.89a 168.27b 86.32c 4.53 103.77 21.66a 17.66b 13.93c 22.65 55.49
2019 3051.90a 2658.75b 2521.35b 14.79 21.04 195.30a 187.95b 108.34c 3.91 80.27 19.40a 16.15b 14.90c 20.12 30.20
2020 3537.75a 3045.45b 2809.20b 16.17 25.93 204.21a 197.82b 108.29c 3.23 88.58 21.71a 17.98b 15.27c 20.75 42.17
2018-2020 3170.75 2740.50 2471.10 15.70 28.31 191.80 184.68 100.98 3.86 89.93 20.92 17.26 14.70 21.20 42.34
[1] 傅漫琪, 刘斌, 王婧, 等. 1985-2015年中国向日葵生产时空动态变化. 河南农业大学学报, 2019, 53(4):631-637.
[2] 马贵仁, 屈忠义, 冯雪婷, 等. 盐碱地改良前后水盐均衡分析——以河套灌区为例. 灌溉排水学报, 2021, 40(增2):95-102.
[3] 张冬梅, 黄学芳, 姜春霞, 等. 冷凉区旱地玉米微垄覆膜土壤水热及产量效应研究. 作物杂志, 2019(2):115-121.
[4] 李俊红, 邵运辉, 刘瑞, 等. 长期垄作覆盖对旱地冬小麦、夏玉米产量和水分利用效率的影响. 河南农业科学, 2020, 49(3):24-31.
[5] 傅渝亮, 汪顺生, 李彦彬. 秸秆覆盖和水分控制条件对垄作沟灌夏玉米生长和产量的影响. 节水灌溉, 2021(11):74-82.
[6] 高世铭, 张绪成, 王亚宏. 旱地不同覆盖沟垄种植方式对马铃薯土壤水分和产量的影响. 水土保持学报, 2010, 24(1):250-256.
[7] 任永峰, 路战远, 赵沛义, 等. 不同种植方式对旱地马铃薯水分利用及产量的影响. 作物杂志, 2019(5):120-124.
[8] 任小龙, 贾志宽, 丁瑞霞, 等. 我国旱区作物根域微集水种植技术研究进展及展望. 干旱地区农业研究, 2010, 28(3):83-89.
[9] Gu X B, Li Y N, Du Y D. Biodegradable film mulching improves soil temperature, moisture and seed yield of winter oilseed rape (Brassica napus L.). Soil & Tillage Research, 2017, 171:42-50.
[10] Ren X L, Chen X L, Jia Z K. Impacts of ridge-furrow rainfall concentration systems and mulches on corn growth and yield in the semiarid region of China. Journal of the Science of Food and Agriculture, 2016, 96(11):3882-3889.
doi: 10.1002/jsfa.2016.96.issue-11
[11] Qin S H, Zhang J L, Dai H L, et al. Effect of ridge-furrow and water movement of potato in a semi-aridarea. Agricultural Water Managemengt, 2014, 131(1):87-94.
[12] 崔婷婷, 杨建国, 李玉成. 高垄滴灌条件下盐碱地土壤盐分再分布研究. 节水灌溉, 2017(9):65-69.
[13] 井涛, 秦永林, 樊明寿, 等. 高垄覆膜滴灌下水氮互作对马铃薯水分利用特性的影响. 内蒙古农业大学学报, 2012, 33(5):42-45.
[14] 司雷勇, 夏镇卿, 金岩, 等. 覆盖方式对旱地春玉米根冠生长及水分利用效率的影响. 作物杂志, 2020(1):146-153.
[15] 候贤清, 牛有文, 吴文利, 等. 不同降雨年型下种植密度对旱作马铃薯生长、水分利用效率及产量的影响. 作物学报, 2018, 44(10):1560-1569.
[16] 薛俊武, 任稳江, 严昌荣. 覆膜和垄作对黄土高原马铃薯产量及水分利用效率的影响. 中国农业气象, 2014, 35(1):74-79.
[17] 梁新波, 张晨, 张冠初, 等. 起垄种植模式对花生生长发育和光合特性的影响. 中国农学通报, 2021, 37(15):20-25.
doi: 10.11924/j.issn.1000-6850.casb2020-0494
[18] 马丽, 李海潮, 付景, 等. 垄作栽培对高产田夏玉米光合特性及产量的影响. 生态学报, 2011, 31(23):7141-7150.
[19] 周苏玫, 李潮海, 常思敏, 等. 起垄栽培对夏玉米生态环境及生长发育的影响. 河南农业大学学报, 2000, 34(3):206-209.
[20] 徐成忠, 孔晓民, 王超, 等. 垄作栽培对夏玉米根系和叶片生长发育及产量性状的影响研究. 玉米科学, 2008, 16(1):101-103.
[21] 马丽, 刘天学, 韩德果, 等. 垄作对冬小麦、夏玉米产量和水分利用效率的影响. 核农学报, 2010, 24(5):1062-1067.
[22] 孙梦媛, 刘景辉, 赵宝平, 等. 全覆膜垄作种植对旱作马铃薯生长和土壤特性的响. 作物杂志, 2018(5):263-276.
[23] Wang Y P, Li X G, Zhu J, et al. Multi-site assessment of the sffects of plastic-film mulch on dryland maize productivity in semiarid areas in China. Agricultural and Forest Meteorology, 2016, 220:160-169.
doi: 10.1016/j.agrformet.2016.01.142
[24] Zhang Y Q, Wang J D, Gong S H, et al. Effects of film mulching on evapotranspiration,yield and water use efficiency of a maize field with drip irrigation in northeastern China. Agricultural Water Management, 2018, 205:90-99.
doi: 10.1016/j.agwat.2018.04.029
[25] 云文丽, 李建军, 侯琼. 土壤水分对向日葵生长状况的影响. 干旱地区农业研究, 2014, 32(2):187-190.
[26] 王杰, 冯浩, 王乃江, 等. 垄作覆膜种植对夏玉米生长和土壤水分动态的影响. 水土保持学报, 2018, 32(2):111-119.
[1] Lü Zengshuai, Dong Hongye, Wang Peng, Duan Wei, Liu Shengli, Liu Yantao. Progress in Mechanism of Herbicide Resistance and Breeding of Sunflower [J]. Crops, 2024, 40(1): 16-22.
[2] Wu Sheng, Duan Yu, Zhang Tingting, An Hao, Zhang Jun, Liang Junmei, Zhang Sheng. Relationships between Dry Matter Accumulation, Transport and Yield of Confectionary Sunflower and Response to Water and Nitrogen Interactions [J]. Crops, 2023, 39(6): 243-251.
[3] Li Hepeng, Zhang Yunhua, Meng Qinglin, Ma Ligong, Yu Hongtao, Li Haiyan, Li Yichu, Liu Jia, Shi Fengmei, Yang Fan, Liu Liang. Screening of Inducers for Sunflower Sclerotinia sclerotiorum and Application of Hypersensitive Protein [J]. Crops, 2023, 39(6): 257-260.
[4] Ling Yibo, Wang Binjie, Hu Yimin, Heinar·Madithermic mann, Chen Nianlai. Responses of Dry Matter Translocation and Yield Formation to Planting Density and Row Spacing of Sunflower [J]. Crops, 2023, 39(5): 197-203.
[5] Yi Bing, Liu Jingang, Song Dianxiu, Wang Dexing, Zhao Mingzhu, Liu Xiaohong, Sun Enyu, Cui Liangji. Study on Land Productivity and Interspecific Competition of Sunflower and Millet Intercropping in Arid Areas [J]. Crops, 2023, 39(5): 219-223.
[6] Zhu Kongyan, Han Shengcai, Zhao Rong, Wen Yujie, Hu Haochi, Qiao Yimin, Lu Jiafeng, Cao Kai, Xu Zhenghan, Bao Haizhu, Gao Julin. Isolation and Identification of Endophytes from Sunflower Seeds [J]. Crops, 2023, 39(5): 280-284.
[7] Jiang Shukun, Wang Lizhi, Yang Xianli, Zhang Xijuan, Liu Kai, Chi Liyong, Li Rui, Lai Yongcai. Spatiotemporal Change Characteristics of Rice Growth Climate Resources in Saline-Alkaline Area of Songnen Plain from 1961 to 2019 [J]. Crops, 2022, 38(6): 214-219.
[8] Jia Xiuping, Mao Xuhui, Liang Gensheng, Liu Runping, Liu Feng, Wang Xingzhen. Analysis of Physiological and Biochemical Mechanism and Growth and Development Characteristics of Saline and Alkali Resistance in Sunflower [J]. Crops, 2022, 38(5): 146-152.
[9] Shi Bixian, Tao Jianfei, Gao Yan, Xie Huihong, Abulimiti·Aierken , Cheng Pingshan, Maitituersun·Sadike , Sha Hong. Effects of Different Planting Densities on the Morphological Traits and Yields of Three Confectionery Sunflower Varieties [J]. Crops, 2022, 38(5): 195-200.
[10] Zhou Fei. Bioinformatics and Expression Analysis of HaLACS7 Gene in Sunflower [J]. Crops, 2022, 38(3): 104-108.
[11] Ling Yibo, Feng Yunge, Wang Binjie, Zhang Kai, Chen Nianlai. Effects of Density and Row Spacing on Canopy Structure and Photosynthetic Characteristics in Sunflower [J]. Crops, 2022, 38(3): 155-160.
[12] Guo Shuchun, Miao Hongmei, Li Suping, Yu Haifeng, Nie Hui, Mu Yingnan, Wen Xinyu, Liang Chen, Zhang Haibin, Shao Ying. Research Advances in the Breeding Study of Sunflower Resistance to Orobanche [J]. Crops, 2022, 38(3): 27-32.
[13] Li Yang, Ren Xiaoci, Li Xiaowei, Li Weitang, Huang Wei, He Zhongguo, Wang Baizhong. Combining Ability and Genetic Analysis of Yield and Main Grain Characteristics of Edible Sunflower [J]. Crops, 2022, 38(2): 75-80.
[14] Zhao Xuanwei, Zhao Yajie, Tian Zhendong, Hu Shuping, Zhao Rong, Ren Yaning, Bao Haizhu, Gao Julin. Response of Dry Matter Transportion and Yield to Sowing Date and Planting Density on Sunflower [J]. Crops, 2021, 37(3): 185-189.
[15] Zhou Fei, Wang Wenjun, Liu Yan, Ma Jun, Wang Jing, Wu Liren, Guan Hongjiang, Huang Xutang. Establishment of Near-Infrared Spectroscopy Model for the Contents of Fat and Fatty Acids in Sunflower Husked Seeds [J]. Crops, 2021, 37(2): 200-206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!