Crops ›› 2019, Vol. 35 ›› Issue (2): 142-149.doi: 10.16035/j.issn.1001-7283.2019.02.022

;

Previous Articles     Next Articles

Effects of Cadmium Stress on Seed Germination and Seedling Growth of Tobacco (Nicotiana tabacum)

Jing Yan,Wenxiu Ji,Xianji Shi,Shimiao Zhu,Hulin Li   

  1. College of Agronomy, Yanbian University, Yanji 133002, Jilin, China
  • Received:2018-10-29 Revised:2019-02-02 Online:2019-04-15 Published:2019-04-12
  • Contact: Hulin Li

Abstract:

The purpose of this study was to investigate the effects of different concentrations of cadmium (Cd) on seed germination and physiological and ecological effects of seedling growth of different tobacco varieties. Three tobacco varieties (Ji 9, Ji 10, Shai 6) were used as test materials to study the effects of different concentrations of Cd on seed germination and seedlings growth of tobacco. Under Cd stress, the seeds germination potential, germination rate, germination index, vigor index and seedling height of tobacco were all inhibited; the chloropohyll content and the ratio of root to shoot of tobacco seedlings was reduced, the growth was inhibited. CAT activity, SOD activity, the content of soluble sugar increased first and then decreased with the increase of Cd concentration. POD activity, MDA content, free proline content increased with the increase of Cd concentration. In other words, under Cd stress, seed germination and seedling growth could be affected to some extent, the antioxidant enzymes in the seedlings were destroyed, enzyme activity was uncoordinated, and the physiological processes were disturbed, leading to tobacco seedling damage.

Key words: Cadmium stress, Nicotiana tabacum, Seed germination, Seedling growth, Physiological and biochemical index

Table 1

Effects of Cd on GE of tobacco seed %"

Cd浓度(mg/L)
Cd concentration
吉9 Ji 9 吉10 Ji 10 晒六Shai 6
0 95.3±0.6b 89.0±1.0b 85.3±0.6b
2 96.7±0.6a 91.3±0.6a 87.7±0.6a
5 94.0±1.0c 87.0±1.0c 82.3±1.2c
10 90.3±0.6d 84.7±0.6d 78.0±1.0c

Table 2

Effects of Cd on GR of tobacco seed %"

Cd浓度(mg/L)
Cd concentration
吉9 Ji 9 吉10 Ji 10 晒六Shai 6
0 95.3±0.6ab 90.3±0.6a 86.3±1.5a
2 96.3±0.6a 91.3±0.6a 88.0±1.0a
5 94.0±1.0b 87.3±0.6b 83.0±1.0b
10 91.0±1.0c 85.3±1.5c 79.0±1.0c

Table 3

Effects of Cd on GI of tobacco seed"

Cd浓度(mg/L)
Cd concentration
吉9 Ji 9 吉10 Ji 10 晒六Shai 6
0 1.65±0.01b 1.41±0.01b 1.32±0.01b
2 1.68±0.01a 1.46±0.01a 1.38±0.01a
5 1.58±0.01c 1.36±0.01c 1.18±0.01c
10 1.43±0.01d 1.25±0.01d 1.05±0.01d

Table 4

Effects of Cd on VI of tobacco seed"

Cd浓度(mg/L)
Cd concentration
吉9 Ji 9 吉10 Ji 10 晒六Shai 6
0 2.22±0.04a 1.84±0.02a 1.41±0.02b
2 1.95±0.02b 1.70±0.01b 1.44±0.02a
5 1.31±0.08c 1.23±0.03c 0.86±0.01c
10 0.99±0.03d 1.08±0.03d 0.67±0.03d

Table 5

Effects of Cd on poison mortality of tobacco bud %"

Cd浓度(mg/L)
Cd concentration
吉9 Ji9 吉10 Ji10 晒六Shai6
0 3.3±1.2a 1.0±0.0a 1.0±1.0a
2 6.7±0.6a 2.0±0.0a 2.0±1.0a
5 30.0±3.0b 21.3±2.3b 25.3±1.5b
10 54.7±1.5c 34.0±2.0c 52.3±2.1c

Table 6

Effects of Cd on the length of tobacco bud cm"

Cd浓度(mg/L)
Cd concentration
吉9 Ji9 吉10 Ji10 晒六Shai6
0 1.27±0.02a 1.29±0.01a 1.07±0.02a
2 1.23±0.01a 1.26±0.01a 1.04±0.01a
5 0.83±0.05b 0.90±0.02b 0.73±0.01b
10 0.69±0.02c 0.73±0.02c 0.58±0.03c

Table 7

Effects of Cd on tobacco seedlings agronomic traits"

品种
Variety
Cd浓度
(mg/kg)
Cd concentration
株高(cm)
Plant
height
茎粗(cm)
Stem
girth
叶片数
Leaf
number
根长(cm)
Root
length
最大叶长(cm)
Maximum
leaf length
最大叶宽(cm)
Maximum
leaf width
吉9 Ji9 0 26.1±1.3a 0.60±0.01a 7.0±0.0a 5.37±0.12a 21.8±0.8a 10.72±0.23a
2 24.5±2.2ab 0.55±0.04b 7.0±0.0a 5.67±1.04a 20.2±0.3ab 9.87±0.21a
5 24.4±0.5ab 0.51±0.01b 6.3±0.6a 4.17±0.32b 19.6±0.3b 8.17±0.31b
10 21.4±2.3b 0.43±0.03c 5.3±0.6b 3.93±0.12b 15.5±1.0c 7.07±0.96c
吉10 Ji10 0 22.7±0.5a 0.60±0.03a 7.0±0.0a 8.00±0.44a 16.1±1.0a 9.77±0.29a
2 20.1±0.7b 0.50±0.03b 7.0±0.0a 7.43±0.81a 13.2±0.3b 9.07±0.40a
5 19.2±0.8b 0.46±0.02b 6.3±0.6b 5.30±0.10b 12.7±0.3b 8.47±0.45a
10 14.4±1.9c 0.41±0.09b 6.0±0.0b 4.53±0.25b 11.0±0.5c 5.87±1.55b
晒六Shai6 0 16.4±1.0a 0.43±0.04a 5.0±0.0a 6.63±0.32a 12.5±0.5a 6.37±0.23a
2 13.6±0.1b 0.41±0.01ab 5.0±0.0a 5.83±0.15b 11.1±0.3b 5.77±0.15b
5 13.3±0.1b 0.40±0.00ab 4.7±0.6a 4.93±0.12c 10.3±0.5c 5.43±0.32b
10 11.7±0.4c 0.38±0.01b 4.3±0.6a 4.37±0.21d 10.1±0.2c 5.00±0.00c

Table 8

Effects of Cd on tobacco seedling biomass"

品种
Variety
Cd浓度
(mg/kg)
Cd concentration
叶绿素含量
Chlorophyll content
(SPAD)
地上部(g/5株)
Above ground (g/5 plants)
地下部(g/5株)
Under ground (g/5 plants)
根冠比
Root-shoot ratio
鲜重
Fresh weight
干重
Dry weight
鲜重
Fresh weight
干重
Dry weight
鲜重比
Fresh weight ratio
干重比
Dry weight ratio
吉9 Ji9 0 24.0±0.1b 44.8±0.2a 3.31±0.08a 2.75±0.07b 0.31±0.01a 0.062±0.001b 0.095±0.002a
2 24.8±0.2a 44.3±0.1b 3.45±0.08a 3.06±0.04a 0.26±0.02b 0.069±0.001a 0.076±0.003b
5 21.9±0.2c 40.5±0.2c 2.57±0.17b 2.29±0.08c 0.19±0.01c 0.057±0.002c 0.076±0.003b
10 19.8±0.6d 28.2±0.1d 1.74±0.13c 1.52±0.04d 0.13±0.01d 0.054±0.001d 0.073±0.002b
吉10 Ji10 0 27.3±0.4ab 42.2±0.9a 2.91±0.07a 3.23±0.02a 0.40±0.03a 0.077±0.002a 0.138±0.013a
2 29.2±1.7a 33.6±1.2b 2.52±0.02b 2.61±0.02b 0.32±0.02b 0.078±0.003a 0.127±0.009a
5 25.4±1.1b 29.7±0.2c 2.33±0.02c 2.16±0.02c 0.25±0.02c 0.073±0.001b 0.107±0.010b
10 21.7±0.6c 26.9±0.4d 1.83±0.04d 1.86±0.02d 0.19±0.01d 0.069±0.001c 0.104±0.004b
晒六Shai6 0 27.7±0.3b 16.5±0.4a 1.30±0.02a 3.33±0.11a 0.32±0.02a 0.202±0.011a 0.246±0.017a
2 32.9±0.8a 15.8±0.2b 1.33±0.01a 2.25±0.12b 0.23±0.02b 0.143±0.006b 0.171±0.013b
5 26.4±0.4c 15.4±0.1b 1.18±0.02b 1.41±0.05c 0.16±0.01c 0.092±0.004c 0.136±0.008c
10 23.6±0.9d 12.4±0.6c 1.05±0.04c 1.05±0.03d 0.12±0.01d 0.085±0.002c 0.118±0.002c

Fig.1

Effects of Cd on the activity of CAT"

Fig.2

Effects of Cd on the activity of SOD"

Fig.3

Effects of Cd on the activity of POD"

Fig.4

Effects of Cd on the content of MDA"

Fig.5

Effects of Cd on the content of soluble sugar"

Fig.6

Effects of Cd on the content of Pro"

Fig.7

Absorption of Cd by different tobacco varieties"

[1] Hu Y F, Zhou G, Na X F , et al. Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. Journal of Plant Physiology, 2013,170(11):965-975.
doi: 10.1016/j.jplph.2013.02.008 pmid: 23683587
[2] Kostrubiak D E, Vacchisuzzi C, Smith D M , et al. Blood cadmium and depressive symptoms:Confounded by cigarette smoking. Psychiatry Research, 2017,256:444-447.
doi: 10.1016/j.psychres.2017.07.019 pmid: 28709058
[3] Uraguchi S, Mori S, Kuramata M , et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 2009,60(9):2677-2688.
doi: 10.1093/jxb/erp119 pmid: 2692013
[4] He J Y, Ren Y F, Wang F J , et al. Characterization of cadmium uptake and translocation in a cadmium-sensitive mutant of rice (Oryza sativa L. ssp. japonica). Archives of Environmental Contamination and Toxicology, 2009,57(2):299-306.
doi: 10.1007/s00244-008-9273-8 pmid: 19112560
[5] Hafsi C, Romero-Puertas M C,Gupta D K ,et al. Moderate salinity enhances the antioxidative response in the halophyte Hordeum maritimum L. under potassium deficiency. Environmental & Experimental Botany, 2010,69(2):129-136.
doi: 10.1016/j.envexpbot.2010.04.008
[6] Nouairi I, Ammar W B, Youssef N B , et al. Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiologiae Plantarum, 2009,31(2):237-247.
doi: 10.1007/s11738-008-0224-9
[7] Kranner I, Colville L . Metals and seeds:Biochemical and molecular implications and their significance for seed germination. Environmental & Experimental Botany, 2011,72(1):93-105.
doi: 10.1016/j.envexpbot.2010.05.005
[8] De T M C, Arrigoni O . The ascorbic acid system in seeds:to protect and to serve. Seed Science Research, 2003,13(4):249-260.
doi: 10.1079/SSR2003143
[9] Gill S S, Tuteja N . Cadmium stress tolerance in crop plants:probing the role of sulfur. Plant Signaling & Behavior, 2011,6(2):215-222.
doi: 10.4161/psb.6.2.14880 pmid: 3121981
[10] Rahoui S, Chaoui A, Ferjani E E . Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Vicia faba L.). Acta Physiologiae Plantarum, 2008,30(4):451-456.
doi: 10.1007/s11738-008-0142-x
[11] Islam M M, Hoque M A, Okuma E , et al. Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 2009,166(15):1587-1597.
doi: 10.1016/j.jplph.2009.04.002 pmid: 19423184
[12] 高阳, 娄虹, 李淑媛 , 等. 镉胁迫对烟草愈伤组织抗氧化系统的影响. 生态学杂志, 2014,33(5):1217-1223.
[13] Toppi L S D, Gabbrielli R . Response to cadmium in higher plants. Environmental & Experimental Botany, 1999,41(2):105-130.
doi: 10.1016/S0098-8472(98)00058-6
[14] Munzuroglu O, Geckil H . Effects of metals on seed germination,root elongation,and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Archives of Environmental Contamination and Toxicology, 2002,43(2):203-213.
doi: 10.1007/s00244-002-1116-4 pmid: 12115046
[15] Sfaxi-Bousbih A, Chaoui A, Ferjani E E . Cadmium impairs mineral and carbohydrate mobilization during the germination of bean seeds. Ecotoxicology & Environmental Safety, 2010,73(6):1123-1129.
doi: 10.1016/j.ecoenv.2010.01.005 pmid: 20138361
[16] Li W, Khan M A, Yamaguchi S , et al. Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regulation, 2005,46(1):45-50.
doi: 10.1007/s10725-005-6324-2
[17] Mahmood T, Islam K R, Muhammad A S . Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pakistan Journal of Botany, 2007,39(2):451-462.
doi: 10.1094/MPMI-20-4-0459
[18] Chugh L K, Sawhney S K . Effect of cadmium on germination,amylases and rate of respiration of germinating pea seeds. Environmental Pollution, 1996,92(1):1-5.
doi: 10.1016/0269-7491(95)00093-3 pmid: 15091404
[19] Mrozek E J . Effect of mercury and cadmium on germination of Spartina alterniflora Loisel seeds at various salinities. Environmental & Experimental Botany, 1982,22(1):23-32.
doi: 10.1016/0098-8472(82)90005-3
[20] Fei-bo W U, Dong J, Jia G X , et al. Genotypic difference in the responses of seedling growth and Cd toxicity in rice (Oryza sativa L.). Agricultural Sciences in China, 2006,5(1):68-76.
doi: 10.1016/S1671-2927(06)60021-7
[21] Mihoub A . Biochemical changes associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.). Comptes Rendus Biologies, 2005,328(1):33-41.
doi: 10.1016/j.crvi.2004.10.003
[22] 景俏丽, 董岁明, 侯琪琪 . 重金属Cd、Pb污染土壤对紫花苜蓿种子萌发和幼苗生长的影响. 安徽农业科学, 2018,46(22):119-121.
doi: 10.13989/j.cnki.0517-6611.2018.22.035
[23] He S, He Z, Yang X , et al. Soil biogeochemistry,plant physiology,and phytoremediation of cadmium-contaminated soils. Advances in Agronomy, 2015,134:135-225.
doi: 10.1016/bs.agron.2015.06.005
[24] 岳昊 . 不同烟草品种的耐镉性差异及其耐性机理研究. 长沙:湖南农业大学, 2015.
[25] 贺远 . 烟草重金属镉的吸收积累规律及其影响机制研究. 北京:中国农业科学院, 2014.
[26] 黄英华, 黄英梅, 李宝香 . 中国烟草行业的市场定位及其发展方向的初步探讨. 中国烟草学报, 2008,14(16):57-61.
doi: 10.3321/j.issn:1004-5708.2008.06.012
[27] Kuthanová A, Gemperlová L, Zelenková S , et al. Cytological changes and alterations in polyamine contents induced by cadmium in tobacco BY-2 cells. Plant Physiology & Biochemistry, 2004,42(2):149-156.
doi: 10.1016/j.plaphy.2003.11.003 pmid: 15283131
[28] 赵秀兰, 刘晓 . 不同品种烟草生长和镉及营养元素吸收对镉胁迫响应的差异. 水土保持学报, 2009,23(1):117-121.
doi: 10.3321/j.issn:1009-2242.2009.01.025
[29] 赵中秋, 朱永官, 蔡运龙 . 镉在土壤-植物系统中的迁移转化及其影响因素. 生态环境学报, 2005,1(2):282-286.
doi: 10.3969/j.issn.1674-5906.2005.02.031
[30] 邹琦 . 植物生理学实验指导. 北京: 中国农业出版社, 2000.
[31] 张宪政 . 植物生理学实验技术. 沈阳: 辽宁科学技术出版社, 1994.
[32] 汤绍虎, 罗充 . 植物生理学实验教程. 重庆: 西南师范大学出版社, 2012.
[33] 王树会 . 重金属汞对烟草种子发芽和幼苗中丙二醛的影响. 农业网络信息, 2017(7):144-146.
doi: 10.3969/j.issn.1672-6251.2007.07.054
[34] Alvarado V, Bradford K J . Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds. Seed Science Research, 2005,15(2):77-88.
doi: 10.1079/SSR2005198
[35] 郭媛, 邱财生, 龙松华 . 镉胁迫对不同地区亚麻主栽品种种子萌发的影响. 作物杂志, 2017(4):146-151.
doi: 10.16035/j.issn.1001-7283.2015.04.032
[36] Zhou W . Deteriorative effects of cadmium stress on antioxidant system and cellular structure in germinating seeds of Brassica napus L. Journal of Agricultural Science & Technology, 2018,17(1):63-74.
[37] 李立芹, 鲁黎明, 卜贵鲜 . 镉胁迫对烟草幼苗生长和生理指标的影响. 贵州农业科学, 2010,38(5):35-37.
doi: 10.3969/j.issn.1001-3601.2010.05.010
[38] He J Y, Ren Y F, Pan X B , et al. Salicylic acid alleviates the toxicity effect of cadmium on germination,seedling growth,and amylase activity of rice. Journal of Plant Nutrition & Soil Science, 2010,173(2):300-305.
doi: 10.1002/jpln.200800302
[39] Feng J P, Shi Q H, Wang X F , et al. Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Scientia Horticulturae, 2010,123(4):521-530.
doi: 10.1016/j.scienta.2009.10.013
[40] Andosch A, Affenzeller M J . A freshwater green alga under cadmium stress:ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. Journal of Plant Physiology, 2012,169(15):1489-1500.
doi: 10.1016/j.jplph.2012.06.002 pmid: 22762790
[41] Bouzid N, Youcef D . Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth,proline,root hydraulic conductivity and nutrient uptake. Flora, 2009,204(4):316-324.
doi: 10.1016/j.flora.2008.03.004
[42] Polle A, Klein T, Kettner C . Impact of cadmium on young plants of Populus euphratica and P.×canescens,two poplar species that differ in stress tolerance. New Forests, 2013,44(1):13-22.
doi: 10.1007/s11056-011-9301-9
[43] Qian H, Li J, Pan X , et al. Photoperiod and temperature influence cadmium's effects on photosynthesis-related gene transcription in Chlorella vulgaris. Ecotoxicology & Environmental Safety, 2010,73(6):1202-1206.
[44] Irfan M, Hayat S, Ahmad A , et al. Soil cadmium enrichment:Allocation and plant physiological manifestations. Saudi Journal of Biological Sciences, 2013,20(1):1-10.
doi: 10.1016/j.sjbs.2012.11.004 pmid: 3730847
[45] Semane B, Dupae J, Cuypers A , et al. Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. Journal of Plant Physiology, 2010,167(4):247-254.
doi: 10.1016/j.jplph.2009.09.015 pmid: 20005002
[46] Gonçalves J F, Becker A G, Cargnelutti D , et al. Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Brazilian Journal of Plant Physiology, 2007,19(3):119-223.
doi: 10.1590/S1677-04202007000200004
[47] 张浩, 陆宁, 钱晓刚 . 不同类型土壤重金属胁迫对烟叶脯氨酸含量的影响. 贵州农业科学, 2017(1):127-131.
doi: 10.3969/j.issn.1001-3601.2014.01.032
[1] Riyu Wen,Jianxia Liu,Zhenhua Zhang,Yaodong Guo,Xuyao Dai,Qingguo Jiang,Lisheng Fan. Effects of Drought Stress on Germination and Physiological Characteristics of Different Quinoa Seeds [J]. Crops, 2019, 35(1): 121-126.
[2] Ma Mengxue,Zhao Lingling,Tang Si,Chen Xianjun,Qin Rui. The Effects of Different Disinfection Methods on Seed Germination and Study on the Environmental Bacteria in Safflower (Carthamus tinctorius L.) [J]. Crops, 2018, 34(6): 162-167.
[3] Han Yan,Hanglin Song,Li Zhang,Jing Yan,Xianji Shi,Shimiao Zhu,Lu Liu,Hulin Li. Effects of Cadmium Stress on Agronomic Traits and Physiological and Biochemical Indexes of Flue-Cured Tobacco [J]. Crops, 2017, 33(5): 156-161.
[4] Wenhao Wang,Hongyuan Zheng,Wenjun Liu,Lifen He,Yuxing Yan. Effects of Exogenous Nitric Oxide on Seed Germination and Seedling Growth of Sunflower [J]. Crops, 2017, 33(4): 169-172.
[5] Zhenjie Zhao,Taibo Liang,Qiansi Chen,Liwei Hu,Yanling Zhang,Qisheng Yin. The Growth and Development of Plants Regulated by Carbon Nano-Materials [J]. Crops, 2017, 33(2): 7-13.
[6] Ziwei Zhang,Chunhua Pang,Yongqing Zhang,Ruijun Ni,Shifang Yang,Luyuan Wang,Liqin Liu. Effects of Iso-osmotic NaCl and PEG Stress and Rewatering on Seed Germination and Seedling Growth of Quinoa [J]. Crops, 2017, 33(1): 119-126.
[7] Yang Sun,Yi Wang,Yao Meng,Haichao Fan,Danyang Qu,Jing Li,Shi Wei,Wanrong Gu. Effects of Exogenous ALA on Growth and Photosynthetic Characteristics of Maize Seedlings under Low Temperature Stress [J]. Crops, 2016, 32(5): 87-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[2] . [J]. Crops, 2013, 29(4): 48 -51 .
[3] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[4] Ying Chai,Yongqing Xu,Yao Fu,Xiuyu Li,Fumeng He,Yingqi Han,Zhe Feng,Fenglan Li. Characteristics of Cell Wall Degradation Enzyme Produced by Main Pathogenic Fusarium spp. in Potato Dry Rot[J]. Crops, 2018, 34(4): 154 -160 .
[5] Yuan Wang,Ze Guo,Xiaohui Li,Shixiao Xu,Xuexia Xing,Siqi Zhang,Jia He,Chao Liu,Fang Chen,Tiezhao Yang. Effects of Meloidogyne incognita Infection on Tobacco Root System under Different Temperatures[J]. Crops, 2018, 34(4): 161 -166 .
[6] . [J]. Crops, 2009, 25(4): 16 -19 .
[7] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[8] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars[J]. Crops, 2018, 34(4): 69 -78 .
[9] Shaohui Huang,Yunma Yang,Ketong Liu,Junfang Yang,Suli Xing,Yanming Sun,Liangliang Jia. Effects of Different Fertilization Method on Wheat Yield and Fertilizer Contribution Rate in Hebei Province[J]. Crops, 2018, 34(1): 113 -117 .
[10] Jianxia Liu,Xiaodan Zhang,Runmei Wang,Feng Zhou,Wenying Liu,Zhiping Liu. Effects of Seed Soaking with 6-BA on Germination and Physiological Characteristics of Mung Bean under Salt Stress[J]. Crops, 2018, 34(1): 166 -172 .