Crops ›› 2019, Vol. 35 ›› Issue (3): 24-28.doi: 10.16035/j.issn.1001-7283.2019.03.005

Previous Articles     Next Articles

Improvement of Grain Oil Content in Maize Inbred Lines by Molecular Markering Technology

Lu Shouping,Zhang Hua,Meng Zhaodong,Mu Chunhua   

  1. Maize Research Institute of Shandong Academy of Agricultural Sciences/Key Laboratory of Maize Biology and Genetic Breeding in North Huanghuaihai, Ministry of Agriculture and Rural Affairs, Jinan 250100, Shandong, China
  • Received:2018-12-10 Revised:2019-04-18 Online:2019-06-15 Published:2019-06-12
  • Contact: Chunhua Mu

Abstract:

High-oil maize refers to maize with a grain oil content higher than 6%. It is an excellent crop of grain, oil and feed. The high oil maize inbred line By804 contains two major QTLs, qHO1 and qHO6. In this study, By804 was used as a donor, using linkage-labeled molecular-assisted selection technology, combined with field agronomic traits identification and nuclear magnetic resonance verification, two major QTLs were transferred to common maize inbred lines lx9801, lx03-2 and lx00- 1 by backcrosses. The results showed that the growth trend of oil in different generations of improved inbred lines was similar. The generation BC1F1 had the highest oil content increase, and with the increase of backcross algebra, the oil content of grain decreased gradually. Different genetic backgrounds had an effect on oil content. The average effect on lx9801 was the best with absolute oil content increases by 0.72% compared with the two-point effects. qHO6 was better in improving the grain oil content, which could increased the oil content of grain by an average of 0.58%.

Key words: Maize, Inbred line, Grain oil, QTL, Marker-assisted selection

Table 1

Dates, sites and methods of selection of materials for each generation"

时间Date 种植世代Generation 种植地点Site 选择方法Method of selection
2006年10月October 2006 亲本 海南三亚 -
2007年2月February 2007 F1 海南三亚 -
2007年6月June 2007 BC1F1 济南章丘 农艺性状、油分检测、标记辅助检测
2007年10月October 2007 BC2F1 海南三亚 农艺性状、油分检测、标记辅助检测
2008年6月June 2008 BC3F1 济南章丘 农艺性状、油分检测、标记辅助检测
2008年10月October 2008 BC4F1 海南三亚 农艺性状、油分检测、标记辅助检测
2009年6月June 2009 BC5F1 济南章丘 农艺性状、油分检测、标记辅助检测
2009年10月October 2009 BC5F2 海南三亚 农艺性状、油分检测、标记辅助检测

Table 2

Linkage marker information for receptor parents"

标记
Marker
位置
Position
与QTL距离(cM)
Distance from QTL
QTL 适用亲本Applicable parent
bnlg1884 bin1.06 13.4 qHO1 lx9801, lx03-2
umc1979 bin6.04 0.5 qHO6 lx9801, lx03-2
umc2112 bin1.02 21.0 qHO1 lx00-1
umc1656 bin6.02 17.8 qHO6 lx00-1

Table 3

PCR amplification conditions for each marker"

标记
Marker
序列
Sequence
PCR反应程序
PCR reaction procedure
产物大小(bp)
Product size
bnlg1884 F:TTCGGATGCATGTGTAACGT
R:CGGAAGTCCCATCTGTTTGT
94℃ 5min;94℃ 30s,58℃ 30s,72℃ 50s,30个循环;72℃ 10min 188
umc1979 F:AATTTCGGGAAACAGGCCAT
R:GAGTCCCCGAAACTGAACACC
94℃ 5min;94℃ 30s,58℃ 30s,72℃ 50s,30个循环;72℃ 10min 140
umc2112 F:AGCTCTACCAAACACGAGCTTCAT
R:CAAATGCAGAAAGATAACGCGAAT
94℃ 5min;94℃ 30s,56℃ 30s,72℃ 50s,30个循环;72℃ 10min 133
umc1656 F:AGTTTTGACCGCGCAAAAGTTA
R:GTACGAGCAGGCCATTAACCC
94℃ 5min;94℃ 30s,56℃ 30s,72℃ 50s,30个循环;72℃ 10min 135

Table 4

Information of seeding, backcrossing and screening of ear for each separation generation"

世代
Generation
lx9801 lx03-2 lx00-1
播种粒数/穗
Seeding
number/ear
回交穗数
Backcross ear
number
果穗入选率(%)
Ear selection rate
播种粒数/穗
Seeding
number/ear
回交穗数
Backcross ear number
果穗入选率(%)
Ear selection rate
播种粒数/穗
Seeding
number/ear
回交穗数
Backcross ear number
果穗入选率(%)
Ear selection rate
BC1F1 290/10* 280** - 215/10 201 - 415/10 264 -
BC2F1 160/14 151 5.00*** 160/17 152 8.45 220/12 218 4.54
BC3F1 370/20 290 13.24 380/20 310 13.16 487/20 350 9.17
BC4F1 380/20 300 6.89 281/20 200 6.46 460/20 420 5.71
BC5F1 507/28 450 9.33 800/36 560 18.00 373/25 340 5.95
合计Total 1 707/92 1 471 8.62 1 416/103 1 423 11.52 1 955/87 1 592 6.34

Fig.1

Amplification map of different markers in progeny of backcross populations"

Fig.2

Variation of oil content in each modified inbred line compared with receptor grain"

Table 5

Oil content of different generations of improved inbred lines %"

材料
Material
lx9801改良系
lx9801 improved line
lx03-2改良系
lx03-2 improved line
lx00-1改良系
lx00-1 improved line
qHO1 qHO6 qHO1 qHO6 qHO1 qHO6
BC1F1 4.16±0.36 4.19±0.23 4.70±0.68 4.85±0.43 4.77±0.63 4.81±0.35
BC2F1 3.47±0.28 3.61±0.32 3.80±0.63 4.01±0.36 4.05±0.64 4.24±0.48
BC3F1 2.81±0.44 3.05±0.54 2.77±0.44 3.04±0.50 3.98±0.44 3.96±0.46
BC4F1 2.87±0.37 2.76±0.37 3.54±0.53 3.41±0.47 3.66±0.57 3.99±0.53
BC5F1 3.08±0.31 3.10±0.35 2.96±0.32 3.01±0.38 3.26±0.35 3.48±0.41
BC5F2 3.20±0.37 3.11±0.41 3.28±0.50 3.58±0.50 3.58±0.40 3.70±0.40

Fig.3

Oil content distribution of the improved lines BC5F2 generation"

[1] 宋同明 . 脉冲核磁共振仪(Pulsed NMR)对作物种子含油量的快速测定. 作物学报, 1989,15(2):160-166.
[2] 范弘伟 . 高油玉米群体的杂种优势模式与高油授粉者选育. 北京:中国农业大学, 2001.
[3] Han Y, Parsons C M, Alexander D E . Nutritive value of high oil corn for poultry. Poultry Science, 1987,66(1):103-111.
doi: 10.3382/ps.0660103
[4] Lambert R J, Hallauer A R. High-oil Corn Hybrids. London: CRC Press, 1994.
[5] Lambert R J, Alexander D E, Mejaya I J . Single Kernel Selection for Increased Grain Oil in Maize Synthetics and High-Oil Hybrid Development.John Wiley & Sons,Inc. 2004: 153-175.
[6] Song T M, Chen S J . Long term selection for oil concentration in five maize populations [Zea mays L.; China]. Maydica, 2004,49(1):9-14.
[7] Clark D, Dudley J W, Rocheford T R , et al. Genetic analysis of corn kernel chemical composition in the random mated 10 generation of the cross of generations 70 of IHO×ILO. Translational Oncology, 2006,3(6):373-379.
[8] Collard B C Y, Mackill D J . Marker-assisted selection:an approach for precision plant breeding in the twenty-first century. Philosophical Transactions:Biological Sciences, 2008,363(1491):557-572.
doi: 10.1098/rstb.2007.2170
[9] Xu Y B, Crouch J H . Marker-assisted selection in plant breeding:from publications to practice. Crop Science, 2008,48(2):391-407.
doi: 10.2135/cropsci2007.04.0191
[10] 郝晓敏 . 利用两个高油主效QTL改良优良杂交种—郑单958的研究. 北京:中国农业大学, 2014.
[11] Hao X M, Li X W, Yang X H , et al. Transferring a major QTL for oil content using marker-assisted backcrossing into an elite hybrid to increase the oil content in maize. Molecular Breeding, 2014,34(2):739-748.
doi: 10.1007/s11032-014-0071-x
[12] Guo Y, Yang X, Yang , et al. Identification of unconditional and conditional QTL for oil,protein and starch content in maize. The Crop Journal, 2013,1(1):34-42.
doi: 10.1016/j.cj.2013.07.010
[13] 郭玉秋 . 高油玉米籽粒品质性状条件与非条件QTL分析及农艺性状QTL的定位. 北京:中国农业大学, 2011.
[14] 李文才 . 粗山羊草D组染色体对小麦若干产量性状的影响. 泰安:山东农业大学, 2005.
[15] Hong Y X, Qiu G Y, Bing Y J , et al. Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theoretical & Applied Genetics, 2010,120(3):665-678.
[1] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize [J]. Crops, 2019, 35(3): 118-125.
[2] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L. [J]. Crops, 2019, 35(3): 185-191.
[3] Dong Zhe,Yang Wude,Zhang Meijun,Zhu Hongfen,Wang Chao. Estimation Models of Maize Leaf SPAD Value Based on Hyperspectral Remote Sensing [J]. Crops, 2019, 35(3): 126-131.
[4] Wu Jianzhong,Li Suiyan,Lin Hong,Ma Yanhua,Pan Liyan,Li Donglin,Sun Dequan. Genetic Variation and Principal Component Analysis of Silage Maize Quality Traits [J]. Crops, 2019, 35(3): 42-48.
[5] Shi Yaxing,Dong Hui,Lu Baishan,Zhao Jiuran,Fan Yanli,Xu Li,Yu Ainian. Grain Dehydration and Gelatinization Characteristics of Waxy Maize at Different Harvesting Time [J]. Crops, 2019, 35(3): 112-117.
[6] Ren Honglei,Li Chunxia,Gong Shichen,Li Guoliang,Hu Guanghui,Wang Mingquan,Yang Jianfei. Genetic Correlation and Path Analysis of Yield and Agronomic Characteristics of Maize Hybrids in SPSS Software [J]. Crops, 2019, 35(3): 86-90.
[7] Yudong Fang,Tianfu Han. Research Progress in Speed Breeding of Crops [J]. Crops, 2019, 35(2): 1-7.
[8] Xixi Dai,Heming Zhan,Xinghong Cui,Yinyue Zhao,Dandan Shan,Liang Zhang,Tiejun Wang. A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping [J]. Crops, 2019, 35(2): 128-135.
[9] Dongmei Zhang,Xuefang Huang,Chunxia Jiang,Wei Zhang,Xiaojuan Wang,Huatao Liu,Liuying Yan,Enke Liu,Guangqian Zhai. Effects of Micro-Ridge Film Mulching on Soil Water and Temperature and Yield of Dryland Maize in Cold Areas [J]. Crops, 2019, 35(2): 115-121.
[10] Yufei Zhang,Lizhi Liu,Yuxuan Ma,Xiaochun Wang,Jianjun Dai. Effects of Tillage and Straw Returning Methods on Maize Yield and Potassium Accumulation and Transport [J]. Crops, 2019, 35(2): 122-127.
[11] Yaxing Shi,Li Xu,Jiuran Zhao,Baishan Lu,Yanli Fan. Waxy Maize Industry Advantages in China and Opportunities in the Development of the Belt and Road [J]. Crops, 2019, 35(2): 15-19.
[12] Huihui Tang,Yanli Xu,Qingyan Wang,Zhengbo Ma,Guangyan Li,Hui Dong,Zhiqiang Dong. Effects of Foliar Spraying 5-Aminolevulinic Acid on Spring Maize Growth and Yield under Different Planting Densities [J]. Crops, 2019, 35(2): 136-141.
[13] Yifei Zhang,Song Yu,Yufeng Wang,Kejun Yang,Zhuangyuan Guo,Yao Li,Yishan Sun,Wenbao Jia,Yafeng Zhang. Research Progress on Agronomic Practice for Grain Moisture Loss of Maize [J]. Crops, 2019, 35(1): 1-8.
[14] Qian Liang,Wenya Liu,Junzhu Ge,Ming Zhao,Haipeng Hou,Yong′an Yang,Decai Xin. Regulation Effects of Narrow-Double Row Precision Sowing with Subsoiling on Yield in Summer Maize [J]. Crops, 2019, 35(1): 111-115.
[15] Yang Zhang,Huilin Yu,Yanbo Wang. Study on Yield and Related Traits of Maize Varieties in Different Ecological Regions of Eastern North China [J]. Crops, 2019, 35(1): 38-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yudong Fang,Tianfu Han. Research Progress in Speed Breeding of Crops[J]. Crops, 2019, 35(2): 1 -7 .
[2] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province[J]. Crops, 2019, 35(3): 132 -136 .
[3] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize[J]. Crops, 2019, 35(3): 118 -125 .
[4] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato[J]. Crops, 2019, 35(3): 158 -161 .
[5] Zhang Ziqiang,Wang Liang,Bai Chen,Zhang Huizhong,Li Xiaodong,Fu Zengjuan,Zhao Shangmin,E Yuanyuan,Zhang Hui,Zhang Bizhou. Analysis on Main Agronomic Traits of 104 Sugarbeet Germplasm Resources[J]. Crops, 2019, 35(3): 29 -36 .
[6] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao[J]. Crops, 2019, 35(3): 37 -41 .
[7] Fan Huiling,Bai Shengwen,Zhu Xuefeng,Li Zhenzhou,Qin Minggang,He Zhijun. Difference of Salt-Alkaline Tolerance of Three Rape and Its Two Relatives at Germination Stage[J]. Crops, 2019, 35(3): 178 -184 .
[8] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L.[J]. Crops, 2019, 35(3): 185 -191 .
[9] Wang Yonggang,Ji Mingze,Zhao Xuhan,Yu Lihe,Xue Yingwen. Effects of Sowing Dates on Yield of Baiyan 7 in Midwest of Heilongjiang Province[J]. Crops, 2019, 35(3): 106 -111 .
[10] Dong Zhe,Yang Wude,Zhang Meijun,Zhu Hongfen,Wang Chao. Estimation Models of Maize Leaf SPAD Value Based on Hyperspectral Remote Sensing[J]. Crops, 2019, 35(3): 126 -131 .