Crops ›› 2019, Vol. 35 ›› Issue (3): 42-48.doi: 10.16035/j.issn.1001-7283.2019.03.008

Previous Articles     Next Articles

Genetic Variation and Principal Component Analysis of Silage Maize Quality Traits

Wu Jianzhong,Li Suiyan,Lin Hong,Ma Yanhua,Pan Liyan,Li Donglin,Sun Dequan   

  1. Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2018-10-23 Revised:2019-04-12 Online:2019-06-15 Published:2019-06-12
  • Contact: Dequan Sun

Abstract:

To identify the correlation and attachment between quality traits of silage maize, 14 self-produced silage maize were selected in this study. The analysis of general descriptive statistics, genetic variation, correlation and principal component analysis were conducted for the 22 quality traits of the silage maize involved. The results showed: among the traits of silage maize, the content of fatty, potassium, lignin and starch have a large improvement space due to the greater coefficient variation of 0.20, 0.19, 0.17 and 0.16, respectively; While the coefficient variation of digestibility and energy quality was between 0.03 and 0.08, indicating that it was difficult to obtain significant genetic improvement for these traits. The high correlation between quality traits made them suitable for silage maize to reserve the most important aspects of quality traits using principal component analysis. In this study, principal components were extracted from 22 quality traits tested, and the cumulative contribution rate of the first three main components reached 91.29%, which representing the feeding value, micronutrients and crude protein components of silage maize, respectively.

Key words: Silage maize, Quality, Genetic variation, Principal component analysis

Table 1

Codes and sources of the tested silage maize materials"

材料编号Code of hybrid 来源(♀×♂) Source
17J401 P7×KWS8855M
17J402 P7-6×KWS8855M
17J403 DK1411×187M
17J405 696F×88L378
17J407 88L378×KWS8855M
17J411 88L378×707M
17J412 阳光1号
17J413 KW-18×BY815
17J414 88L378×BY815
17J417 88L378-3×BY815
17J421 88L378×BY4944
17J422 88L378-1×BY815
17J424 P7×BY815
17J425 龙育15

Table 2

Quality characters and description values of 14 silage maize materials"

指标Index 缩写
Acronym
平均值±标准差
Mean±SD
变幅
Range
最小值
Min.
最大值
Max.
变异系数(%)
Variable coefficient
灰分Ash content (%) Ash(%) 5.24±0.45 1.90 4.26 6.16 9
脂肪含量Ether extract content (%) EE(%) 2.66±0.52 1.70 1.86 3.56 20
粗蛋白质含量Crude protein content (%) CP(%) 7.50±0.94 4.13 4.42 8.55 13
淀粉含量Starch content content (%) SC(%) 32.14±5.16 19.31 18.91 38.22 16
木质素含量Crude xylogen content (%) CX(%) 2.94±0.50 2.03 2.18 4.21 17
ADF含量Acid detergent fiber content (%) ADF(%) 22.21±2.81 11.01 18.04 29.05 13
NDF含量Neutral detergent fiber content (%) NDF(%) 39.56±4.75 19.66 31.69 51.35 12
48h NDF可消化率Digestibility of NDF for 48h (% DM) dNDF48 27.54±2.28 8.81 23.92 32.73 8
体外48h干物质消化率In vitro dry matter digestibility for 48h (% DM) IVDMD48 81.04±2.50 9.77 74.82 84.59 3
Ca(%) Ca(%) 0.25±0.03 0.08 0.20 0.28 11
P(%) P(%) 0.26±0.01 0.04 0.24 0.28 5
K(%) K(%) 0.74±0.14 0.44 0.48 0.92 19
Mg(%) Mg(%) 0.24±0.01 0.02 0.23 0.25 4
非纤维性碳水化合物Non-fibrous carbohydrate (%) NFC(%) 46.13±4.44 18.42 35.22 53.64 10
体外48h NDF可消化率Digestibility of NDF in vitro for 48h (% DM) dvNDF48 69.92±2.91 11.74 63.74 75.48 4
总可消化养分Total digestible nutrient (% DM) TDN(%) 68.21±2.36 8.00 63.00 71.00 3
产奶净能Net energy of lactation (Mcal/kg) NEL 1.41±0.06 0.20 1.28 1.48 4
维持净能Net energy for maintenance (Mcal/kg) NEM 1.69±0.07 0.25 1.53 1.78 4
增重净能Net energy for gain (Mcal/kg) NEG 1.02±0.08 0.34 0.84 1.18 8
相对饲喂价值Relative feeding value RFV 170.93±24.31 100.00 120.00 220.00 14
相对牧草价值Relative pasture value Rpv 141.64±8.44 30.00 125.00 155.00 6
产奶量/t干物质Milk yield per ton dry matter (kg) Mp 1 341.93±81.69 294.00 1 152.00 1 446.00 6

Table 3

Correlation analysis of quality traits in 14 silage maize matericals"

性状Trait Ash(%) EE(%) CP(%) SC(%) CX(%) ADF(%) NDF(%) dNDF48 IVDMD48 Ca(%) P(%) K(%) Mg(%) NFC% dvNDF48 TDN(%) NEL NEM NEG RFV Rpv
EE(%) -0.610*
CP(%) -0.567* -0.191
SC(%) -0.450 -0.691** -0.322
CX(%) -0.347 -0.392 -0.296 -0.877**
ADF(%) -0.413 -0.594* -0.454 -0.965** -0.854**
NDF(%) -0.302 -0.498 -0.418 -0.952** -0.872** -0.987**
dNDF48 -0.183 -0.415 -0.413 -0.889** -0.762** -0.950** -0.972**
IVDMD48 -0.468 -0.676** -0.368 -0.971** -0.908** -0.963** -0.941** -0.849**
Ca(%) -0.678** -0.319 -0.167 -0.083 -0.091 -0.231 -0.305 -0.435 -0.094
P(%) -0.646* -0.425 -0.595* -0.360 -0.219 -0.332 -0.271 -0.226 -0.317 -0.485
K(%) -0.881** -0.833** -0.334 -0.552* -0.310 -0.458 -0.343 -0.248 -0.518 -0.630* -0.555*
Mg(%) -0.341 -0.224 -0.193 -0.239 -0.364 -0.333 -0.378 -0.432 -0.269 -0.768** -0.571* -0.397
NFC(%) -0.339 -0.468 -0.438 -0.942** -0.873** -0.982** -0.995** -0.964** -0.932** -0.280 -0.264 -0.354 -0.386
dvNDF48 -0.451 -0.536* -0.378 -0.893** -0.922** -0.891** -0.886** -0.760** -0.952** -0.051 -0.296 -0.438 -0.215 0.891*
TDN(%) -0.608* -0.741** -0.391 -0.937** -0.850** -0.874** -0.848** -0.725** -0.942** -0.186 -0.483 -0.663** -0.016 0.846** 0.930**
NEL -0.644* -0.783** -0.425 -0.954** -0.821** -0.904** -0.865** -0.762** -0.948** -0.152 -0.531 -0.696** -0.023 0.861** 0.895** 0.984**
NEM -0.628* -0.755** -0.396 -0.956** -0.859** -0.902** -0.868** -0.753** -0.957** -0.155 -0.487 -0.675** -0.045 0.866** 0.920** 0.992** 0.995**
NEG -0.445 -0.537* -0.384 -0.895** -0.919** -0.892** -0.889** -0.765** -0.952** -0.054 -0.310 -0.432 -0.203 0.892** 1.000** 0.932** 0.897** 0.921**
RFV -0.282 -0.462 -0.445 -0.920** -0.839** -0.973** -0.986** -0.963** -0.921** -0.343 -0.267 -0.319 -0.370 0.983** 0.892** 0.826** 0.836** 0.836** 0.895**
Rpv -0.695** -0.690** -0.425 -0.791** -0.785** -0.705** -0.659* -0.508 -0.815** -0.401 -0.657* -0.660* -0.172 0.650* 0.799** 0.909** 0.904** 0.911** 0.802** 0.614*
Mp -0.627* -0.763** -0.419 -0.961** -0.845** -0.916** -0.880** -0.775** -0.961** -0.128 -0.495 -0.677** -0.052 0.878** 0.917** 0.989** 0.998** 0.998** 0.918** 0.854** 0.897**

Table 4

Principal components extracted and the accumulation of eigenvalues"

成分
Component
初始特征值Initial eigenvalues 提取平方和载入Extraction sums of squared loadings
合计Total 方差Variance (%) 累积Accumulation (%) 合计Total 方差Variance (%) 累积Accumulation (%)
1 14.88 67.66 67.66 14.88 67.66 67.66
2 4.03 18.33 85.99 4.03 18.33 85.99
3 1.17 5.30 91.29 1.17 5.30 91.29
4 0.70 3.18 94.47
5 0.55 2.50 96.97
6 0.28 1.29 98.25
7 0.18 0.83 99.08
8 0.13 0.59 99.68
9 0.04 0.20 99.88
10 0.01 0.06 99.94
11 0.01 0.03 99.97
12 0.01 0.03 99.99
13 0.001 0.01 100.00
14 5.00E-16 2.27E-15 100.00
15 3.44E-16 1.56E-15 100.00
16 2.85E-16 1.30E-15 100.00
17 8.19E-17 3.72E-16 100.00
18 4.65E-17 2.11E-16 100.00
19 -1.27E-16 -5.76E-16 100.00
20 -1.86E-16 -8.44E-16 100.00
21 -3.31E-16 -1.50E-15 100.00
22 -6.00E-16 -2.73E-15 100.00

Table 5

Loading matrix of traits factor"

性状Trait 主成分Principal component
1 2 3
Ash(%) -0.576 -0.687 -0.076
EE(%) 0.694 0.402 -0.361
CP(%) 0.470 0.256 0.778
SC(%) 0.974 -0.118 -0.105
CX(%) -0.883 0.236 0.069
ADF(%) -0.958 0.231 -0.075
NDF(%) -0.932 0.329 -0.097
dNDF48 -0.842 0.425 -0.189
IVDMD48 0.980 -0.133 -0.097
Ca(%) 0.025 0.939 -0.129
P(%) 0.462 0.631 0.440
K(%) -0.606 -0.665 0.203
Mg(%) -0.139 0.860 0.123
NFC(%) 0.930 -0.320 0.114
dvNDF48 0.939 -0.126 -0.055
TDN(%) 0.972 0.137 -0.116
NEL 0.982 0.140 -0.078
NEM 0.984 0.115 -0.111
NEG 0.941 -0.124 -0.042
RFV 0.912 -0.348 0.147
Rpv 0.862 0.358 -0.059
Mp 0.989 0.104 -0.085
[1] 库来夏·哈孜依 . 青贮玉米栽培管理技术、收获与制作. 中国畜牧兽医文摘, 2016,32(10):214.
[2] 李忠秋, 刘春龙 . 青贮饲料的营养价值及其在反刍动物生产中的应用. 家畜生态学报, 2010,31(3):95-98.
[3] 余汝华, 赵丽华, 莫放 , 等. 玉米秸秆青贮饲料中NDF与ADF含量变化规律的研究. 饲料工业, 2003,24(10):19-20.
[4] 刘铭三 . 谷物及油料品质分析法. 北京: 农业出版社, 1987.
[5] 卢宝红 . 普通玉米品质性状的遗传变异与相关及近红外测定方法的研究. 北京:中国农业大学, 2005.
[6] 高聚林, 王志刚, 孙继颖 , 等. 青贮玉米对氮磷钾的吸收规律. 作物学报, 2006,32(3):363-368.
[7] 张效梅, 乔治军, 李峰 . 我国青贮玉米的研究现状及市场前景. 科技情报开发与经济, 2014,14(6):76-78.
[8] 郭勇庆, 曹志军, 李胜利 , 等. 全株玉米青贮生产与品质评定关键技术. 中国畜牧杂志, 2012,48(18):39-44.
[9] 朱建国 . 青贮玉米物质生产特性与营养品质的研究. 北京:中国农业大学, 2005.
[10] 张越利 . 燕麦生育时期、品种及与玉米的混合比例对青贮品质的影响. 杨凌:西北农林科技大学, 2012.
[11] 马光路, 吕建波, 曹青 . 玉米秸秆中木质素、半纤维素和纤维素的组分分离研究. 中国农业科技导报, 2015,17(6):70-79.
[12] 李胜开, 肖玲, 张倩云 , 等. 2015~2016年中国青贮玉米品质分析. 中国奶牛, 2017(11):54-60.
[13] Nelson W F . Impact of stage of maturity and method of preservation of alfalfa on milk production and fiber utilization by lactating dairy cows. Journal of Dairy Science, 1990,73(7):1800-1811.
doi: 10.3168/jds.S0022-0302(90)78860-1
[14] Dagdeviren C, Zhou L, Zhong L W . Energy harvesting from the animal/human body for self-powered electronics. Annual Review of Biomedical Engineering, 2017,19(1):85-108.
doi: 10.1146/annurev-bioeng-071516-044517
[1] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province [J]. Crops, 2019, 35(3): 132-136.
[2] Gao Tongmei,Li Feng,Wu Yin,Wei Libin,Wang Dongyong,Tian Yuan,Fei Gaoliang,Wei Shuangling. Effects of Different Irrigation Regimes on Canopy Structure and Population Quality of Sesame [J]. Crops, 2019, 35(3): 162-167.
[3] Zhang Yahong,Wang Furong,Lei Jianming,Wu Junyan,Fan Tiping,Zhang Jianxue. Effects of Sowing Date on the Yield and Quality of Perilla frutescens L.in the Dryland Hills Area [J]. Crops, 2019, 35(3): 168-171.
[4] Feng Xuejin,Guo Xiujuan,Yang Jianchun,Wang Liqin. Effects of Spraying Selenium Fertilizer on Selenium Content, Yield and Quality of Flax Seed [J]. Crops, 2019, 35(3): 155-157.
[5] Cao Liang,Huang Binglin,Wang Mengxue,Zhang Yuxian. Effects of Row Spacing and Number of Seedling Per Hole on Yield and Quality of Rice in Cold Regions [J]. Crops, 2019, 35(3): 91-98.
[6] Ying Fu,Yinan Shen,Yanchun Liu,Xiaojiao Chai,Xianrui Wang,Xiaolei Bai,Shutian Li. Correlation Analysis of Amylopectin Content, Nutritional Quality and Agronomic Traits in Spring Millet Varieties [J]. Crops, 2019, 35(2): 90-93.
[7] Deming Xiang,Mingfa Zhang,Shuguang Peng,Feng Tian,Jianxin Luo,Wu Chen,Yunfan Cai,Minghui Tian,Qisong Lü. Effects of Consecutive Applying Different New Type Fertilizers on Soil Fungal Communities and Tobacco Quality and Yield [J]. Crops, 2019, 35(2): 156-163.
[8] Shuangqin Tang,Ziming Wu,Xueming Tan,Yongjun Zeng,Qinghua Shi,Xiaohua Pan,Yanhua Zeng. Identification of Cold Tolerance of Direct Seeded Early Rice Varieties at Bud Stage [J]. Crops, 2019, 35(1): 159-167.
[9] Zhao Xin,Chen Shaofeng,Wang Hui,Liu Sancai,Yang Xiushi,Zhang Baolin. Research on the Yield and Quality of Different Tartaty Buckwheat Varieties in Northern Shanxi Area [J]. Crops, 2018, 34(5): 27-32.
[10] Li Shaokun,Zhang Wanxu,Wang Keru,Han Dongsheng,Yang Xiaoxia,Chen Yongsheng,Yu Wanbing,Liu Chaowei,Zhang Guoqiang,Liu Fenghe,Chen Jianglu,Yang Jingjing,Li Lulu,Xie Ruizhi,Hou Peng,Ming Bo. Study on Maize Mechanical Grain Harvest in Northern Xinjiang [J]. Crops, 2018, 34(5): 127-131.
[11] Gao Wenjun,Yang Guoyi,Gao Xinzhong,Yu Zhu,Xu Qingfang,Yuan Xiangyang,Sun Yaowu. The Effects of Nitrogen, Phosphorus, or Potassium Fertilizer on the Yield and Silage Quality of Maize [J]. Crops, 2018, 34(5): 144-149.
[12] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years [J]. Crops, 2018, 34(4): 32-36.
[13] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province [J]. Crops, 2018, 34(4): 143-148.
[14] Wen Zhang,Tao Lu,Yuxia Ye,Quanyi Liu,Yang Feng. Studies on the Effect of Mixed Defoliant on Cotton in Kuitun District, Xinjiang [J]. Crops, 2018, 34(3): 103-107.
[15] Zhiqiang Tang,Liqiang Dong,Rui Li,Liying Zhang,Na He,Yuedong Li. Effects of Nitrogen and Soil Type on Seedling Quality and Nutrient Absorption in Rice [J]. Crops, 2018, 34(3): 141-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yudong Fang,Tianfu Han. Research Progress in Speed Breeding of Crops[J]. Crops, 2019, 35(2): 1 -7 .
[2] . [J]. Crops, 1993, 9(S1): 6 -7 .
[3] . [J]. Crops, 2011, 27(2): 129 .
[4] . [J]. Crops, 1988, 4(3): 35 .
[5] Yanmin Li,Xiantao Qi,Changlin Liu,Fang Liu,Chuanxiao Xie. Progress of Crop Breeding on Resistance to Herbicides[J]. Crops, 2017, 33(2): 1 -6 .
[6] Narong Shi,Jingjing Li,Huiyu Wu,Daojie Sun,Yi Feng,Hui Wang,Xinlun Liu,Lingli Zhang. Genetic Relationship of Xinong 979 and Thinopyrum ponticum Based on Pedigree Analysis and Molecular Markers[J]. Crops, 2019, 35(1): 15 -21 .
[7] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province[J]. Crops, 2019, 35(3): 132 -136 .
[8] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize[J]. Crops, 2019, 35(3): 118 -125 .
[9] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato[J]. Crops, 2019, 35(3): 158 -161 .
[10] Lu Shouping,Zhang Hua,Meng Zhaodong,Mu Chunhua. Improvement of Grain Oil Content in Maize Inbred Lines by Molecular Markering Technology[J]. Crops, 2019, 35(3): 24 -28 .