Crops ›› 2019, Vol. 35 ›› Issue (3): 80-85.doi: 10.16035/j.issn.1001-7283.2019.03.013

Previous Articles     Next Articles

Genetic Analysis of Rape Hybrid Fengyou No.10 Using SNP Chips

Cai Dongfang1,Zhang Shufen1,Wang Jianping1,Cao Jinhua1,Wen Yancheng1,Zhang Shufa2,He Junping1,Zhao Lei1,Wang Dongguo1,Zhu Jiacheng1   

  1. 1 Industrial Crops Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs/Key Laboratory of Oil Crop Genetic Improvement in Henan Province, Zhengzhou 450002, Henan, China
    2 Tanghe Seed Technical Service Station of Henan Province, Tanghe 473400, Henan, China
  • Received:2018-12-25 Revised:2019-04-02 Online:2019-06-15 Published:2019-06-12
  • Contact: Jiacheng Zhu

Abstract:

In order to analyze the molecular genetic basis of rape hybrid Fengyou No.10, Fengyou No.10 and 20 elite inbred lines including its parents were genotyped using the Illumina 60K SNP chip technology. The results showed that the genetic distance between pairs of 20 elite inbred lines ranged from 0.123 to 0.463, with an average of 0.348. The genetic distance between the female parent 22A and male parent P087-2 of Fengyou No.10 was 0.375, which was higher than the average value of 20 elite inbred lines. All these inbred lines were divided into four groups using cluster analysis, in which the female parent 22A and male parent P087-2 belong to the first group and the fourth group, respectively. Comparative genome analysis found that the hybrid Fengyou No.10 had the similarity of 64.77% and 62.89% with its female parent 22A and male parent P087-2, respectively. The 30.78% loci of Fengyou No.10 were heterozygous. At the same time, the great differences of the polymorphism rate in 19 chromosomes were observed between Fengyou No.10 and the parents. Our study would provide a theoretical guide for subsequent variety breeding in Brassica napus.

Key words: Brassica napus, SNP chips, Genetic distance, Genetic basis

Table 1

20 parental lines and their origins"

序号No. 田间编号Field No. 来源Origin 系Line
1 2001 22A 不育系
2 3001 P087-2 恢复系
3 p189 P189×220 恢复系
4 p003 59R 恢复系
5 p014 595R 恢复系
6 p023 20151R 恢复系
7 p044 4R 恢复系
8 p064 384R 恢复系
9 p080 1053R 恢复系
10 p095 220×西杂3号R 恢复系
11 p098 220 恢复系
12 p131 (320×220)×ZY0913 恢复系
13 p156 P189 恢复系
14 p208 R279 恢复系
15 p263 R300 恢复系
16 p378 S2B 保持系
17 p471 R51 恢复系
18 p476 91142B 保持系
19 p493 628B 保持系
20 p612 77B×848 保持系

Table 2

The analysis of genetic distance between 20 parental lines"

来源Origin 22A P087-2 P189×220 59R 595R 20151R 4R 384R 1053R 220×西杂3号R
220×Xiza No.3 R
220 (320×220)×
ZY0913
P189 R279 R300 S2B R51 91142B 628B
22A
P087-2 0.375
P189×220 0.363 0.268
59R 0.377 0.373 0.343
595R 0.348 0.375 0.332 0.320
20151R 0.371 0.379 0.316 0.368 0.274
4R 0.294 0.360 0.295 0.349 0.317 0.350
384R 0.345 0.356 0.351 0.358 0.313 0.377 0.336
1053R 0.322 0.373 0.354 0.307 0.298 0.314 0.313 0.335
220×西杂3号R
220×Xiza No.3 R
0.347 0.296 0.252 0.381 0.336 0.360 0.341 0.346 0.377
220 0.340 0.348 0.372 0.288 0.340 0.360 0.325 0.343 0.285 0.354
(320×220)×
ZY0913
0.386 0.387 0.334 0.316 0.357 0.385 0.368 0.180 0.358 0.377 0.369
P189 0.372 0.310 0.194 0.377 0.322 0.303 0.354 0.335 0.359 0.259 0.372 0.370
R279 0.360 0.316 0.241 0.389 0.339 0.316 0.311 0.361 0.346 0.302 0.372 0.393 0.123
R300 0.370 0.334 0.300 0.400 0.368 0.355 0.368 0.279 0.364 0.306 0.376 0.263 0.292 0.311
S2B 0.382 0.424 0.338 0.287 0.364 0.423 0.355 0.336 0.363 0.386 0.328 0.291 0.394 0.397 0.402
R51 0.358 0.327 0.298 0.347 0.307 0.303 0.345 0.336 0.318 0.300 0.363 0.360 0.302 0.312 0.317 0.369
91142B 0.422 0.403 0.283 0.392 0.402 0.430 0.431 0.425 0.445 0.347 0.455 0.394 0.358 0.389 0.376 0.402 0.390
628B 0.322 0.358 0.360 0.316 0.316 0.350 0.314 0.338 0.307 0.354 0.277 0.355 0.376 0.362 0.376 0.316 0.355 0.463
77B×848 0.316 0.372 0.320 0.307 0.303 0.330 0.230 0.337 0.286 0.349 0.300 0.352 0.339 0.325 0.377 0.333 0.343 0.427 0.327

Fig.1

The cluster tree for 20 parental lines"

Table 3

The genotype comparsion of Fengyou No.10 and its parents"

染色体Chromosome 同母本Identical with female 同父本Identical with male 完全杂合Completely heterozygous 完全纯合Completely homozygous 合计
Total
完全杂合型的比例(%)The ratio of completely heterozygous genetypes 与母本的多态性比例(%)
The polymorphism ratio
with female
与父本的多态性比例(%)
The polymorphism ratio with male
A01 127 92 504 667 1 390 36.26 42.88 45.40
A02 84 64 319 696 1 163 27.43 32.93 34.65
A03 125 104 681 1 186 2 096 32.49 37.45 38.45
A04 55 59 371 880 1 365 27.18 31.50 31.21
A05 124 126 400 776 1 426 28.05 36.89 36.75
A06 68 63 463 841 1 435 32.26 36.66 37.00
A07 178 82 441 1 064 1 765 24.99 29.63 35.07
A08 55 32 134 785 1 006 13.32 16.50 18.79
A09 104 63 448 940 1 555 28.81 32.86 35.50
A10 283 32 350 764 1 429 24.49 26.73 44.30
C01 60 55 361 1 691 2 167 16.66 19.20 19.43
C02 52 51 117 259 479 24.43 35.07 35.28
C03 103 109 907 1 291 2 410 37.63 42.16 41.91
C04 47 78 1 222 1 536 2 883 42.39 45.09 44.02
C05 46 68 332 474 920 36.09 43.48 41.09
C06 62 54 520 690 1 326 39.22 43.29 43.89
C07 124 63 433 1 041 1 661 26.07 29.86 33.53
C08 68 55 652 644 1 419 45.95 49.82 50.74
C09 58 32 215 617 922 23.32 26.79 29.61
合计Total 1 823 1 282 8 870 16 842 28 817 - - -
比值Ratio (%) 6.33 4.45 30.78 58.44 - - 35.23 37.11
[1] Liu S, Fan C C, Li J N , et al. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theoretical and Applied Genetics, 2016,129(6):1203-1215.
doi: 10.1007/s00122-016-2697-z
[2] 农业部种植业管理司. 全国大宗油料作物生产发展规划(2016~2020年). 中国农业信息, 2017(1):6-15.
[3] 张毅 . 我国油菜生产及油料需求分析. 农业技术与装备, 2009(13):14-16.
[4] 郭海洋 . 基于HRM技术的水稻全基因组SNP标记开发及其初步应用. 广州:华南农业大学, 2016.
[5] Yan J B, Yang X H, Shah T , et al. High-throughput SNP genotyping with the GoldenGate assay in maize. Molecular Breeding, 2010,25(3):441-451.
doi: 10.1007/s11032-009-9343-2
[6] Khan M A, Han Y, Zhao Y F , et al. A high-throughput apple SNP genotyping platform using the GoldenGateTM assay. Gene, 2012,494(2):196-201.
doi: 10.1016/j.gene.2011.12.001
[7] Wang N, Li F, Chen B , et al. Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theoretical and Applied Genetics, 2014,127(8):1817-1829.
doi: 10.1007/s00122-014-2343-6
[8] 桑世飞, 王会, 梅德圣 , 等. 利用全基因组SNP芯片分析油菜遗传距离与杂种优势的关系. 中国农业科学, 2015,48(12):2469-2478.
[9] 于海至 . 中国油菜强优势杂交种骨干亲本的遗传分析. 武汉:华中农业大学, 2015.
[10] Liu L Z, Qu C M, Wittkop B J , et al. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS ONE, 2013,8(12):e83052.
doi: 10.1371/journal.pone.0083052
[11] Wang X, Yu K, Li H , et al. High-density SNP map construction and QTL identification for the apetalous character in Brassica napus L. Frontiers in Plant Science, 2015,6(105):1164-1178.
[12] 卢坤, 王腾岳, 徐新福 , 等. 甘蓝型油菜结角高度与荚层厚度的全基因组关联分析. 作物学报, 2016,42(3):344-352.
doi: 10.3724/SP.J.1006.2016.000344
[13] Tan M, Liao F, Hou L , et al. Genome-wide association analysis of seed germination percentage and germination index in Brassica napus L. under salt and drought stresses. Euphytica, 2017,213(2):40-54.
doi: 10.1007/s10681-016-1832-x
[14] 张书芬 . 国审高产双低油菜杂交种丰油10号. 种业导刊, 2005(6):44.
[15] 朱家成, 张书芬, 王建平 , 等. 高产优质甘蓝型油菜杂交种丰油10号的选育. 中国种业, 2011(11):56-57.
[16] 曹金华, 朱家成, 张书芬 , 等. 覆盖对土壤温度及甘蓝型油菜丰油10号抗寒性和产量的影响. 中国油料作物学报, 2014,36(2):213-218.
doi: 10.7505/j.issn.1007-9084.2014.02.011
[17] 王子敏, 乐明凯 . 丰油9号和丰油10号迟播冬发高产技术. 中国种业, 2008(11):56.
[18] Liu K J, Muse S V . PowerMarker:an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005,21(9):2128-2129.
doi: 10.1093/bioinformatics/bti282
[19] Kumar S, Stecher G, Tamura K . MEGA7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016,33:1870-1874.
doi: 10.1093/molbev/msw054
[20] Wickham H . ggplot2:Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
[21] 路明, 张志军, 郑淑波 , 等. 基于SNP标记分析玉米品种吉单50的遗传基础. 玉米科学, 2016,24(6):1-7.
[22] Riaz A, Li G, Quresh Z , et al. Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breeding, 2001,120:411-415.
doi: 10.1046/j.1439-0523.2001.00636.x
[23] 沈金雄, 陆光远, 傅廷栋 , 等. 甘蓝型油菜遗传多样性及其与杂种表现的关系. 作物学报, 2002,28(5):622-627.
[24] 徐小栋, 陈飞, 倪西源 , 等. 甘蓝型油菜分子距离与杂种优势和产量表型的相关分析. 浙江大学学报(农业与生命科学版), 2010,36(6):641-649.
[25] 王凯华, 张文, 王会 , 等. 国内外甘蓝型油菜种质SSR标记遗传多样性分析. 中国农学通报, 2011,27(19):144-149.
[26] 宋立红, 智文良, 李玮 , 等. 我国近年审定的甘蓝型油菜品种的遗传多样性分析. 西南农林科技大学学报, 2011,39(11):110-118.
[27] 何俊平, 张书芬, 王建平 , 等. 甘蓝型油菜育种亲本材料遗传多样性的SSR分析. 西南农业学报, 2015,28(6):2374-2380.
[1] Junping He,Shufen Zhang,Jianping Wang,Dongfang Cai,Jinhua Cao,Yancheng Wen,Kun Hu,Lei Zhao,Dongguo Wang,Jiacheng Zhu. Hybrid Purity Identification of Fengyou No.10 by SSR Markers in Bassica napus [J]. Crops, 2019, 35(1): 75-80.
[2] Dongfang Cai,Shufen Zhang,Jianping Wang,Junping He,Jinhua Cao,Yancheng Wen,Lei Zhao,Dongguo Wang,Jiacheng Zhu. Effects of Slow-Released Nitrogen Fertilizer Application on Photosynthetic Characteristics and Yield in Brassica napus (Fengyou 10) [J]. Crops, 2018, 34(2): 136-140.
[3] Yingfen Jiang,Xinjie Wu,Weixin Fei,Fengxiang Chen. Research Progress on Recessive Genic Male Sterility of Rapeseed [J]. Crops, 2018, 34(2): 11-16.
[4] Mingzhi Yin,Chunyun Guan. Isozyme Analysis of a New Cytoplasmic Male Sterile Line 1193A and Its Maintain Line in Brassica napus [J]. Crops, 2016, 32(4): 36-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yudong Fang,Tianfu Han. Research Progress in Speed Breeding of Crops[J]. Crops, 2019, 35(2): 1 -7 .
[2] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province[J]. Crops, 2019, 35(3): 132 -136 .
[3] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize[J]. Crops, 2019, 35(3): 118 -125 .
[4] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato[J]. Crops, 2019, 35(3): 158 -161 .
[5] Lu Shouping,Zhang Hua,Meng Zhaodong,Mu Chunhua. Improvement of Grain Oil Content in Maize Inbred Lines by Molecular Markering Technology[J]. Crops, 2019, 35(3): 24 -28 .
[6] Zhang Ziqiang,Wang Liang,Bai Chen,Zhang Huizhong,Li Xiaodong,Fu Zengjuan,Zhao Shangmin,E Yuanyuan,Zhang Hui,Zhang Bizhou. Analysis on Main Agronomic Traits of 104 Sugarbeet Germplasm Resources[J]. Crops, 2019, 35(3): 29 -36 .
[7] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao[J]. Crops, 2019, 35(3): 37 -41 .
[8] Fan Huiling,Bai Shengwen,Zhu Xuefeng,Li Zhenzhou,Qin Minggang,He Zhijun. Difference of Salt-Alkaline Tolerance of Three Rape and Its Two Relatives at Germination Stage[J]. Crops, 2019, 35(3): 178 -184 .
[9] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L.[J]. Crops, 2019, 35(3): 185 -191 .
[10] Wang Yonggang,Ji Mingze,Zhao Xuhan,Yu Lihe,Xue Yingwen. Effects of Sowing Dates on Yield of Baiyan 7 in Midwest of Heilongjiang Province[J]. Crops, 2019, 35(3): 106 -111 .