Crops ›› 2019, Vol. 35 ›› Issue (3): 73-79.doi: 10.16035/j.issn.1001-7283.2019.03.012

Previous Articles     Next Articles

Establishment and Optimization of Agrobacterium Mediated Transformation System for Mature Embryo of Foxtail Millet

Li Yanfang,Du Yanwei,Zhang Zheng,Wang Gaohong,Zhao Genyou,Zhao Jinfeng,Yu Aili   

  1. Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi 046011, Shanxi, China
  • Received:2018-11-15 Revised:2018-12-21 Online:2019-06-15 Published:2019-06-12
  • Contact: Jinfeng Zhao

Abstract:

In this study, we developed the foxtail millet in vitro transformation system by using Agrobacterium mediated based on screening 216 foxtail millet varieties to obtain high quality embryo callus. Calli induced from mature seeds of variety 178 as explants. The Agrobacterium strain LBA4404 harboring binary vector pCAMBIA 3301 which contained β-glucuronidase (gus) as the reporter gene, transformed into embryogenic callus for optimizing transformation conditions. For infection with Agrobacterium, calluses derived from shoot apex explants were prepared and submerged in bacterial suspension for different durations, meanwhile the concentration of AS in co-cultivation medium was optimized. Resistant calli were gained by selecting them on a medium containing phosphinothricin and kanamycin. Transformed plants were obtained from the resistant calli after differentiation and regeneration. The target gene was detected by gus activity assay and PCR analysis of bar gene. These results indicated the foreign gene has been integrated into the genome of millet and can be effectively expressed.

Key words: Foxtail millet, Agrobacterium, Mature embryos, Genetic transformation, Callus

Table 1

Media used in experiment"

培养基Media 培养基组分Medium composition
愈伤组织诱导培养基(A)
Calli inducing medium
MS培养基+2.0mg/L 2,4-D+0.5mg/L Kinetin+40g/L麦芽糖+35mg/L ZnSO4·7H2O+0.6mg/L CuSO4·5H2O+
8mg/L AgNO3+4g/L植物凝胶,pH 5.8
分化培养基(B)
Differential medium
MS培养基+2.0mg/L Kinetin+20g/L麦芽糖+7g/L Phytoblend(植物凝胶类似物),pH 5.8
农杆菌悬浮侵染培养基(C)
Suspending medium
MS培养基+40g/L麦芽糖+35mg/L ZnSO4·7H2O+0.6mg/L CuSO4·5H2O+100μmol/L乙酰丁香酮(AS)+1g/L泊洛沙姆,pH 5.8
共培养基(D)
Co-cultural medium
MS培养基+2.0mg/L 2,4-D+0.5mg/L Kinetin+40g/L麦芽糖+35mg/L ZnSO4·7H2O+0.6mg/L CuSO4·5H2O+
100μmol/L AS+1g/L泊洛沙姆+4g/L植物凝胶,pH 5.8
筛选分化培养基(E)
Screening and differentiation medium
分化培养基+150mg/L特美汀+5mg/L草丁膦,pH 5.8
筛选再生培养基(F)
Screening and regeneration medium
MS培养基+2.0mg/L 2,4-D+0.5mg/L Kinetin+40g/L麦芽糖+35mg/L ZnSO4·7H2O+0.6mg/L CuSO4·5H2O+
4g/L植物凝胶+150mg/L特美汀+10mg/L草丁膦,pH 5.8
生根培养基(G)
Rooting medium
1/2 MS培养基+30g/L蔗糖+7g/L Phytoblend,pH 5.7

Table 2

Genotype of millet suitable for tissue culture %"

材料编号
Material code
基因型
Genotype
发芽率
Rate of germination
愈伤组织诱导率
Rate of callus induction
抗性愈伤组织率
Rate of resistance callus
gus表达率
Rate of gusexpression
19 豫谷1号Yugu 1 83.5 84.2 32.6 11.4
50 长农35 Changnong 35 80.5 83.1 35.8 25.3
63 长生06 Changsheng 06 68.5 85.3 18.9 7.5
125 长生07 Changsheng 07 80.5 81.7 24.6 19.2
129 沁州黄Qinzhouhuang 96.6 87.2 12.6 3.9
164 冀谷11 Jigu 11 78.4 72.6 48.7 35.3
168 金谷1号Jingu 1 91.5 86.8 34.2 19.5
178 晋谷21 Jingu 21 82.6 79.6 42.5 38.9

Fig.1

Effects of AgNO3 concentration on callus growth status"

Fig.2

Effects of 2,4-D concentration on callus growth status"

Fig.3

Effects of Kinetin concentration on callus growth status"

Fig.4

Effects of Agrobacterium concentration on transformation results"

Fig.5

Effects of infection time on transformation results"

Fig.6

Effects of AS concentration on transformation results"

Fig.7

The test results of transgenic Setaria italic Positive control; 2, Negative control; 3-11, Different transformed lines; Marker, DL 5000"

[1] 智慧, 牛振刚, 贾冠清 , 等. 谷子干草饲用品质性状变异及相关性分析. 作物学报, 2012,38(5):800-807.
doi: 10.3724/SP.J.1006.2012.00800
[2] Jayaraman A, Puranik S, Rai N K , et al. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Molecular Biotechnology, 2008,40:241-251.
doi: 10.1007/s12033-008-9081-4
[3] Muthamilarasan M, Prasad M . Advances in setaria genomics for genetic improvement of cereals and bioenergy grasses. Theoretical and Applied Genetics, 2015,128(1):1-14.
doi: 10.1007/s00122-014-2399-3
[4] Taylor M, Vasil I K . GUS gene expression in cereal cell suspensions and immature embryos using the maize ubiquiton-based plasmid pAHC25. Plant Cell Reports, 1993,12:491-495.
[5] 许智宏, 夏镇澳 . 谷子与狗尾草的组织培养. 植物生理学通讯, 1983(2):12-13.
[6] 刁现民, 段胜军, 陈振玲 , 等. 谷子体细胞无性系变异分析. 中国农业科学, 1999,32(3):21-26.
[7] 赵连元, 纪芸, 段胜军 . 谷子原生质体植株再生研究. 华北农学报, 1990(5):27-29.
[8] 王永芳, 李伟, 刁现民 . 根癌农杆菌共培养转化谷子技术体系的建立. 河北农业科学, 2003,7(4):1-6.
[9] 袁进成, 刘颖慧, 董志平 , 等. 谷子成熟胚诱导愈伤组织及植株再生的研究和条件的优化. 生物技术通报, 2013(3):77-82.
[10] 刘颖慧, 于静娟, 赵倩 , 等. 根癌农杆菌介导谷子的遗传转化. 农业生物技术学报, 2005,13(1):32-37.
[11] Jefferson R A . Assaying chimerical gene sin plants:the GUS gene fusion system. Plant Molecular Biology Reports, 1987,11:38-47.
[12] 魏开发, 刘逸萍, 林子英 , 等. 农杆菌介导单子叶植物遗传转化问题与对策. 植物学通报, 2008,25(4):491-496.
[13] Zhang Y M, Linghu J J, Wang D , et al. Foxtail millet CBL4 (SiCBL4) interacts with SiCIPK24,modulates plant salt stress tolerance. Plant Molecular Biology Reporter, 2017,35:634-646.
doi: 10.1007/s11105-017-1051-1
[14] Lakkakula S, Periyasamy R, Arokiam S R , et al. Somatic embryogenesis and regeneration using Gracilaria edulis and Padina boergesenii seaweed liquid extracts and genetic fidelity in finger millet (Eleusine coracana). Journal of Applied Phycology, 2016,28:2083-2098.
doi: 10.1007/s10811-015-0696-0
[15] 赵巧阳, 赖钟雄 . 硝酸银在离体培养和转化中的作用及其机理. 亚热带农业研究, 2008,4(1):62-66.
[16] 王景雪, 孙毅, 胡晶晶 , 等. 玉米自交系高频率再生因素研究. 作物学报, 2004,30(6):398-402.
[17] 王文星, 屈山, 曹成有 , 等. 硝酸银对离体培养烟草叶片愈伤组织形成和芽再生及其脯氨酸和丙二醛含量的影响. 植物生理学通讯, 2006,42(4):668-670.
[18] 孔维龙, 王翠, 但乃震 , 等. 根癌农杆菌介导的香石竹遗传转化体系建立. 中国农业大学学报, 2018,23(4):34-44.
[19] 朱军, 韩锁义, 袁美 , 等. 农杆菌介导的花生遗传转化条件优化. 中国油料作物学报, 2018,40(2):191-198.
[20] Shweta B, Suresh K . Agrobacterium-mediated transient GUS gene expression in buffel grass (Cenchrus ciliaris L.). Journal of Application Genetics, 2003,44:449-458.
[21] Smith R, Hood E . Agrobacterium tumefaciens transformation of monocotyledons. Crop Science, 1995,35:301-309.
doi: 10.2135/cropsci1995.0011183X003500020001x
[22] Stachel S E, Messens E, Montagu M , et al. Identification of the signal molecules produced by wounded plant cell that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 1985,318:624-629.
doi: 10.1038/318624a0
[23] Cheng M, Lowe B A, Speneer T M , et al. Factors in flueneing Agrobacterium-mediated transformation of monoeotyledonous speeies. In Vitro Cellular & Developmental Biology-Plant, 2004,40:31-45.
doi: 10.1079/IVP2003501
[24] Shrawat A K, Lorz H . Agrobacterium-mediated transformation of cereals:a promising approach crossing barriers. Plant Biotechnology Journal, 2006,4:575-603.
doi: 10.1111/pbi.2006.4.issue-6
[25] Hensel G, Valkov V, Kumlehn J , et al. Efficient generation of transgenic barley:the way forward to modulate plant microbe interactions. Journal of Plant Physiology, 2008,165:71-82.
doi: 10.1016/j.jplph.2007.06.015
[26] Ishida Y, Tsunashima M, Hiei Y , et al. Wheat (Triticum aestivum L.) transformation using immature embryos. Agrobacterium Protocols, 2015,1223:189-198.
doi: 10.1007/978-1-4939-1695-5
[27] Lakkakula S, Arokiam S R, Ceasar S A , et al. Influence of plant growth regulators and spermidine on somatic embryogenesis and plant regeneration in four Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn). Plant Cell Tissue and Organ Culture, 2016,124(1):15-31.
doi: 10.1007/s11240-015-0870-8
[28] 李颜方, 赵晋锋, 王高鸿 , 等. 农杆菌介导谷子遗传转化的研究进展. 中国农学通报, 2016,32(36):66-72.
[29] Sweta D, Chawla H S . In vitro plant regeneration and transformation studies in millets:current status and future prospects. India Journal of Plant Physiology, 2016,21(3):239-254.
doi: 10.1007/s40502-016-0240-5
[30] Ceasar S A, Ignacimuthu S, Coll L , et al. Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants. Plant Cell Report, 2011,30:1759-1770.
doi: 10.1007/s00299-011-1084-0
[31] Martins P K, Ribeiro A P, Dias B A , et al. A simple and highly efficient Agrobacterium-mediated transformation protocol for Setaria viridis. Biotechnology Reports, 2015,6:41-44.
doi: 10.1016/j.btre.2015.02.002
[32] Pooja J, Rustagi A, Agnihotri P K , et al. Efficient Agrobacterium-mediated transformation of Pennisetum glaucum (L.) R. Br. using shoot apices as explant source. Plant Cell Tissue and Organ Culture, 2011,107:501-512.
doi: 10.1007/s11240-011-0001-0
[33] Saha P, Blumwald E . Spike-dip transformation of Setaria viridis. The Plant Journal, 2016,86(1):89-101.
doi: 10.1111/tpj.2016.86.issue-1
[34] Lakkakula S, Periyasamy R, Ceasar S A , et al. Effects of cefotaxime,amino acids and carbon source on somatic embryogenesis and plant regeneration in four Indian genotypes of foxtail millet (Setaria italica L.). In Vitro Cellular & Developmental Biology-Plant, 2016,52(2):140-153.
[35] Van E J, Swartwood K, Pidgeon K , et al. Agrobacterium tumefaciens-mediated transformation of Setaria viridis. Plant Genetics and Genomics, 2017,19:343-356.
[36] Zhang X, Henriques R, Lin S S , et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 2006,1(2):641-646.
doi: 10.1038/nprot.2006.97
[37] Martins P K, Nakayama T J, Ribeiro A P , et al. Setaria viridis floral-dip:a simple and rapid Agrobacterium mediated transformation method. Biotechnology Reports, 2015,6:61-63.
doi: 10.1016/j.btre.2015.02.006
[1] Yanwei Du,Jinfeng Zhao,Gaohong Wang,Yanfang Li,Genyou Zhao,Xiaoguang Yan. Study of Lodging Resistance of Spring-Sowing Foxtail Millet in Maturity Stages [J]. Crops, 2019, 35(1): 141-145.
[2] Wang Xiaolin,Ji Xiaoling,Zhang Panpan,Zhang Xiong,Zhang Jing. Correlation Analysis between Aboveground Biomass Allocation and Grain Yield in Different Varieties of Foxtail Millet in the Dry Land of Loess Plateau [J]. Crops, 2018, 34(5): 150-155.
[3] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China [J]. Crops, 2018, 34(4): 42-47.
[4] Wei Zhang,Liangqun Wang,Yong Liu,Yanfang Hao,Wei Yang,Hongyan Bai,Bo Wu. Optimization of the Factors Related to the Efficiency of Agrobacterium-Mediated Transformation of Sorghum [J]. Crops, 2018, 34(1): 56-61.
[5] Xiaodong Dai,Cancan Zhu,Na Qin,Yufeng Yang,Yannan Wang,Guohong Yang,Bing Si,Shihui Liu,Junxia Li. Effects of Uniconazole and Plant Density on Yield and Its Relavent Components of Foxtail Millet [J]. Crops, 2017, 33(2): 104-108.
[6] Gouliang Song,Xiaolei Feng,Guangyu Fan,Gaolei Shi,Shuangdong Li,Feng Wang,Xiaoming Wang,Zhihai Zhao. Analysis of Parental Combining Ability of New Sterile Lines in Foxtail Millet [J]. Crops, 2017, 33(2): 44-50.
[7] Zhihua Li,Xiaolan Jing,Huixia Li,Gang Tian,Xin Liu,Tingting Mu. Safety and Weed Control Efficiency of Foxtail Millet Seedling Stage Herbicides [J]. Crops, 2017, 33(1): 150-154.
[8] Tingting Mu,Huiling Du,Xiaolan Jing,Zhihua Li,Qi Guo,Gang Tian,Huixia Li,Zhang Liu. Effects of Exogenous Selenium on Yield Components and Selenium Content in Grain of Foxtail Millet [J]. Crops, 2017, 33(1): 73-78.
[9] Lijuan Zhao,Jinfeng Ma,Yandong Li,Xiangyu Li,Zhijiang Li,Hongmei Yuan,Wendong Guo. Mutagenic Effects of 60Co-γ-Ray Radiation on Dry Seeds of Foxtail Millet [J]. Crops, 2017, 33(1): 38-43.
[10] Xiaodong Dai,Xinzhi Xu,Cancan Zhu,Yufeng Yang,Na Qin,Yannan Wang,Chunyi Wang,Xiaoping Yang,Guohong Yang,Junxia Li. Study on the Effects of N P K Fertilizer in Foxtail Millet [J]. Crops, 2016, 32(5): 147-151.
[11] Jingdong Wang,Hongwen Ma,Yunfang Fan,Xiaojun Chen. The Study on Antibacterial Effects of Different Antibiotics and Concentrations in a Genetic Transformation System of Yandao8 [J]. Crops, 2016, 32(5): 61-66.
[12] Lijuan Zhang,Jianying Lu,Chang Wang,Gengmei Min,Xiaoming Yang. The Study on the Influence Factors of Callus and Adventitious Bud Induction in Pea [J]. Crops, 2016, 32(3): 33-36.
[13] Zhongyong Cen,Jiang Su,Xichao Deng,Yanjun Xie. Study on Total Phenolic Content and Correlation between PPO Activity and Browning of Corydalis saxicola Bunting Callus [J]. Crops, 2016, 32(1): 149-153.
[14] Xiaodong Dai,Xinzhi Xu,Cancan Zhu,Yufeng Yang,Chunyi Wang,Xiaoping Yang,Guohong Yang,Junxia Li. Seeding Stage Response to Different Water Availability and Drought Resistance Evaluation of Foxtail Millet [J]. Crops, 2016, 32(1): 140-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yudong Fang,Tianfu Han. Research Progress in Speed Breeding of Crops[J]. Crops, 2019, 35(2): 1 -7 .
[2] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province[J]. Crops, 2019, 35(3): 132 -136 .
[3] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize[J]. Crops, 2019, 35(3): 118 -125 .
[4] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato[J]. Crops, 2019, 35(3): 158 -161 .
[5] Lu Shouping,Zhang Hua,Meng Zhaodong,Mu Chunhua. Improvement of Grain Oil Content in Maize Inbred Lines by Molecular Markering Technology[J]. Crops, 2019, 35(3): 24 -28 .
[6] Zhang Ziqiang,Wang Liang,Bai Chen,Zhang Huizhong,Li Xiaodong,Fu Zengjuan,Zhao Shangmin,E Yuanyuan,Zhang Hui,Zhang Bizhou. Analysis on Main Agronomic Traits of 104 Sugarbeet Germplasm Resources[J]. Crops, 2019, 35(3): 29 -36 .
[7] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao[J]. Crops, 2019, 35(3): 37 -41 .
[8] Fan Huiling,Bai Shengwen,Zhu Xuefeng,Li Zhenzhou,Qin Minggang,He Zhijun. Difference of Salt-Alkaline Tolerance of Three Rape and Its Two Relatives at Germination Stage[J]. Crops, 2019, 35(3): 178 -184 .
[9] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L.[J]. Crops, 2019, 35(3): 185 -191 .
[10] Wang Yonggang,Ji Mingze,Zhao Xuhan,Yu Lihe,Xue Yingwen. Effects of Sowing Dates on Yield of Baiyan 7 in Midwest of Heilongjiang Province[J]. Crops, 2019, 35(3): 106 -111 .