Crops ›› 2020, Vol. 36 ›› Issue (4): 127-134.doi: 10.16035/j.issn.1001-7283.2020.04.018

Previous Articles     Next Articles

Responses of Cotton to Planting Densities and Nitrogen Rates under Direct Seeding in Summer with Simplified Fertilization

Qin Hongde1(), Rong Yihua2, Huang Xiaoli3, Hu Aibing4, Zhou Jiahua5, Yan Xianhui2, Li Wei3, Zhang Xianhong4, Li Hongju5, Yang Guozheng6()   

  1. 1Cash Crop Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, Hubei, China
    2Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
    3Huanggang Academy of Agricultural Sciences, Huanggang 438000, Hubei, China
    4Jingzhou Academy of Agricultural Sciences, Jingzhou 434000, Hubei, China
    5Jingmen (China Agricultural Valley) Academy of Agricultural Sciences, Jingmen 448000, Hubei, China
    6College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
  • Received:2019-10-22 Revised:2020-03-04 Online:2020-08-15 Published:2020-08-11
  • Contact: Yang Guozheng E-mail:qinhongde2002@163.com;ygzh9999@mail.hzau.edu.cn

Abstract:

In order to explore the suitable planting density and nitrogen rate of direct seeding cotton in summer under the measures of increasing density, reducing nitrogen and simplifying fertilization (One-time fertilization at first flowering), split plot design trail was conducted to explore the effects of planting density (75 000 and 90 000 plant/ha), nitrogen rate (135, 195 and 255kg/ha) and their interaction on agronomic traits, yield and fiber quality in three major cotton production areas of Hubei province in 2016 and 2017. The results showed that when the planting density was increased from 75 000 to 90 000 plant/ha, the length of middle-top fruiting branches decreased by 1.3 and 1.8cm respectively, the length of first fruit internode of fruiting branch decreased by 0.5 and 0.6cm respectively in two years; the number of bolls per unit area increased by 90 000 plant/ha; but there was no significant difference in agronomic traits, harvest lint yield and fiber quality. There was also no significant difference in theoretical lint yield, harvest lint yield, fiber quality and agronomic traits across nitrogen fertilizer from 135kg/ha to 255kg/ha. Under the pattern of the cotton direct seeding in summer with simplified fertilization, cotton could achieve a relatively stable yield within the range of high density and low nitrogen fertilizer set up in this study. When this planting pattern was implemented in the main cotton producing areas of Hubei province, the density can be increased to 90 000 plant/ha and the nitrogen fertilizer reduced to 135kg/ha.

Key words: Cotton, Direct seeding in summer, Yield, Quality, Planting density, Nitrogen

Table 1

Meteorological factors during the direct seeding cotton growth season"

月份
Month
平均温度
Average temperature (℃)
平均湿度
Average humidity (%)
降水量
Precipitation (mm)
雨日
Days of raining (d)
2016 2017 历年平均
Average from
1951 to 2015
2016 2017 历年平均
Average from
1951 to 2015
2016 2017 历年平均
Average from
1951 to 2015
2016 2017 历年平均
Average from
1951 to 2015
6 25.6 25.9 26.9 82.0 82.6 78.4 358.5 68.9 165.7 15 12 11.5
7 29.7 31.2 29.8 82.2 74.6 77.7 582.8 48.7 252.2 13 2 9.5
8 30.3 29.1 29.2 74.9 85.3 77.8 68.0 123.6 112.2 10 11 8.5
9 26.3 24.7 24.8 66.5 84.7 75.9 23.7 75.3 53.5 6 16 7.5
10 20.9 18.4 19.4 81.1 90.7 75.4 113.3 21.3 50.2 16 16 8.4

Table 2

Effects of planting densities and nitrogen rates on cotton growth period d"

因子Factor 处理
Treatment
苗期
Seedling
蕾期
Squaring
花铃期
Boll
setting
生育期
Growth
period
种植密度
Planting density (D)
D1 34.9a 19.8a 47.8a 102.5a
D2 35.0a 19.5a 47.2a 101.7a
氮肥
Nitrogen (N)
N1 34.6a 20.2a 47.9a 102.7a
N2 35.1a 19.8a 47.0a 101.9a
N3 35.1a 19.1a 47.6a 101.8a
年份Year(Y) 2016 37.0a 21.3a 44.5b 102.8a
2017 32.8b 18.1b 50.5a 101.4a
互作方差来源
Source of interaction
variation
D×N 00.963 00.767 00.082 000.140
D×Y 00.718 00.951 00.432 000.673
N×Y 00.980 00.419 00.795 000.869
D×N×Y 00.915 00.849 00.530 000.801

Table 3

Growth and development traits varied as planting densities and nitrogen rate of direct seeding cotton in summer"

因子
Factor
处理
Treatment
株高
Plant
height (cm)
主茎直径
Stem diameter
(mm)
主茎叶数
Main stem
leaves
单株果枝数
Fruiting branches
per plant
果枝始节高度
Height of the first
fruiting branch (cm)
单株铃数
Bolls per
plant
果节数
Fruit
nodes
种植密度Planting density (D) D1 87.0a 10.3a 16.2a 11.6a 29.7a 2.6a 23.6a
D2 86.0a 10.1a 16.2a 10.9b 30.6a 2.3a 22.3a
氮肥Nitrogen (N) N1 86.1a 10.2a 16.3a 11.7a 29.8a 2.5a 23.5a
N2 86.5a 10.2a 16.3a 11.2a 30.0a 2.4a 22.6a
N3 87.0a 10.1a 16.0a 11.0a 30.5a 2.5a 22.8a
年份Year (Y) 2016 86.9a 09.7b 15.7b 10.8b 28.5b 2.7a 24.7a
2017 86.2a 10.7a 16.7a 11.7a 31.7a 2.2b 21.2b
互作方差来源
Source of interaction variation
D×N 00.837 00.803 00.576 00.568 00.884 0.795 00.986
D×Y 00.794 00.916 00.365 00.560 00.922 0.945 00.579
N×Y 00.917 00.954 00.907 00.189 00.944 0.547 00.910
D×N×Y 00.998 00.956 00.760 00.805 00.988 0.856 00.714

Fig.1

Effects of planting densities and nitrogen rates on fruiting branch length of cotton"

Fig.2

Effects of planting densities and nitrogen rates on the first internode length of fruiting branch"

Table 4

Effects of planting densities and nitrogen rates on lint yield and yield components of direct seeding cotten in summer"

因子Factor 处理
Treatment
成铃数
Boll (×104/hm2)
铃重
Boll weight (g)
衣分
Lint percentage (%)
皮棉产量Lint yield (kg/hm2)
理论Theoretical 实收Harvest
种植密度Planting density (D) D1 80.2b 5.25a 43.4a 1 831.3b 1 067.2a
D2 89.2a 5.22a 43.0a 1 995.8a 0 980.0a
氮肥Nitrogen (N) N1 85.6a 5.28a 43.3a 1 959.7a 1 038.8a
N2 84.2a 5.20a 43.1a 1 892.3a 1 021.2a
N3 84.3a 5.23a 43.2a 1 908.2a 1 014.2a
年份Year (Y) 2016 88.2a 5.11b 41.5b 1 867.4b 1 128.0a
2017 81.2b 5.37a 44.9a 1 959.6a 0 907.6b
互作方差来源
Source of interaction variation
D×N 00.960 0.577 00.296 0 000.673 0 000.791
D×Y 00.861 0.994 00.287 0 000.488 0 000.577
N×Y 00.351 0.667 00.579 0 000.771 0 000.897
D×N×Y 00.636 0.682 00.765 0 000.829 0 000.856

Table 5

Effects of planting densities and nitrogen rates on cotton fiber quality"

因子Factor 处理
Treatment
纤维长度
Fiber length (mm)
比强度
Fiber strength (cN/tex)
马克隆值
Micronaire
纤维整齐度
Fiber uniformity (%)
伸长率
Elongation (%)
种植密度Planting density (D) D1 29.2a 28.3a 4.9a 83.9a 6.4a
D2 29.2a 28.3a 4.9a 83.7b 6.4a
氮肥Nitrogen (N) N1 29.2a 28.5a 4.8a 84.0a 6.4a
N2 29.4a 28.5a 4.9a 83.9a 6.3a
N3 29.0a 28.0a 5.0a 83.6a 6.4a
年份Year (Y) 2016 29.7a 29.8a 5.1a 84.8a 6.7a
2017 28.7b 26.8b 4.7b 82.8b 6.1b
互作方差来源
Source of interaction variation
D×N 00.349 00.387 0.289 00.721 0.554
D×Y 00.919 00.438 0.879 00.058 0.642
N×Y 00.374 00.733 0.753 00.750 0.431
D×N×Y 00.058 00.328 0.596 00.771 0.666
[1] 高伟, 张西岭 . 长江流域棉花生产现状及“十三五 ”发展建议. 中国棉花, 2016,43(1):3-7.
[2] 张冬梅, 张艳军, 李存东 , 等. 论棉花轻简化栽培. 棉花学报, 2019,31(2):163-168.
[3] 董合忠, 杨国正, 李亚兵 , 等. 棉花轻简化栽培关键技术及其生理生态学机制. 作物学报, 2017,43(5):631-639.
[4] 阳会兵, 马一学, 陈金湘 , 等. 种植方式与密度对油后棉生育特性及产量构成的影响. 激光生物学报, 2015,24(2):191-198.
[5] 李大庆, 徐立华, 郑春宁 , 等. 麦后直播棉种植密度与皮棉产量的关系. 江苏农业科学, 1991(3):32-34.
[6] 王洋, 荣义华, 梅汉成 , 等. 鄂杂棉30麦后直播高效栽培技术研究. 中国棉花, 2018,45(12):25-30.
[7] 王欣悦, 刘爱玉, 邹茜 , 等. 密度与播种期对直播棉生长发育和产量品质的影响. 作物研究, 2014,28(6):597-601.
[8] 戴宝生, 闫振华, 黄晓丽 , 等. 播种期和密度对短季棉品种冈早1号产量的影响. 棉花科学, 2017,39(5):31-34.
[9] Khan A, Najeeb U, Wang L S , et al. Planting density and sowing date strongly influence growth and lint yield of cotton crops. Field Crops Research, 2017,209:129-135.
[10] 王孝刚, 张教海, 夏松波 , 等. 密度对麦后直播棉生育特性、产量及品质的影响. 湖北农业科学, 2017,55(7):222-224.
[11] 杨长琴, 张国伟, 刘瑞显 , 等. 氮肥运筹对麦后直播棉产量与氮素利用的影响. 中国生态农业学报, 2016,24(12):1607-1613.
[12] 李飞, 郭利双, 李景龙 , 等. 施氮水平对油棉连作棉花氮磷钾吸收分配与利用的影响. 华北农学报, 2018,33(3):196-202.
[13] 宋兴虎, Wagan T A, Souliyanonh B , 等. 氮肥用量及其后效对棉花产量和生物质累积动态的影响. 棉花学报, 2018,30(2):145-154.
[14] Yang G, Zhou M . Multi-location investigation of optimum planting density and boll distribution of high-yielding cotton (G. hirsutum L) in Hubei province,China. Agricultural Sciences in China, 2010,9(12):1749-1757.
[15] 王强 . 一次施肥时间对棉花产量形成和养分累积的影响. 武汉:华中农业大学, 2014.
[16] 聂以春 . 转基因抗虫棉新品种华棉3109. 中国棉花, 2015,42(7):37-38.
[17] 秦鸿德, 周家华, 黄晓莉 , 等. 夏棉低耗高效直播种植技术. 中国棉花, 2018,45(11):45-46.
[18] Steel R G D, Torrie J H . Analysis of covariance. Principles and Procedures of Statistics:a Biometrical Approach,2nd edition. New York: McGraw-Hill, 1980: 401-437.
[19] Dong H, Li W, Tang W , et al. Quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Field Crops Research, 2006,98:106-115.
[20] Khan A, Wang L S, Ali S , et al. Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crops Research, 2017,214:164-174.
[21] Gwathmey C O, Clement J D . Alteration of cotton source-sink relations with plant population density and mepiquat chloride. Field Crops Research, 2010,116(1/2):101-107.
[22] Ren X M, Zhang L Z, Du M W , et al. Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crops Research, 2013,149:1-10.
[23] Wang X, Hou Y, Du M , et al. Effect of planting date and plant density on cotton traits as relating to mechanical harvesting in the Yellow River valley region of China. Field Crops Research, 2016,198:112-121.
[24] 史加亮 . 行株距配置和密度对棉花生长发育及产量品质的影响. 泰安:山东农业大学, 2014.
[25] Siebert J D, Stewar A M . Influence of plant density on cotton response to mepiquat chloride application. Agronomy Journal, 2006,98(6):1634-1639.
[26] 李鹏程, 董合林, 刘爱忠 , 等. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响. 植物营养与肥料学报, 2015,21(1):81-91.
[27] Dai J, Li W, Zhang D , et al. Competitive yield and economic benefits of cotton achieved through a combination of extensive pruning and a reduced nitrogen rate at high plant density. Field Crops Research, 2017,209:65-72.
[28] 唐胜, 李文才 . 棉花不同施氮量对纤维品质影响的研究. 安徽农业科学, 1991(1):33-36.
[29] 陈亮, 杨国正, 祝珍珍 , 等. 氮素用量对棉花产量和品质的影响. 中国棉花, 2011,38(4):15-18.
[30] 赵双印 . 施氮对棉花养分吸收规律及产量品质影响的研究. 乌鲁木齐:新疆农业大学, 2009.
[31] Luo Z, Liu H, Li W , et al. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Research, 2018,218:150-157.
[32] Dong H, Li W, Eneji A E , et al. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Research, 2012,126:137-144.
[33] 黄颖 . 夏直播棉花应用缩节胺效果研究. 武汉:华中农业大学, 2017.
[1] Zhang Xiaoyan, Wang Xiaonan, Cao Kun, Sun Yufeng. Correlation Analysis of Fiber Yield and Yield Components in Five Industrial Hemp Varieties (Lines) [J]. Crops, 2020, 36(4): 121-126.
[2] Cao Changlin, Lü Huiqing, Hao Zhiping, Gao Xiang, Zhou Zhongyu. Effects of Foliar Spraying Zinc and Boron Fertilizer on the Yield and Quality of Jin Buckwheat (Bitter) No.5 [J]. Crops, 2020, 36(4): 135-142.
[3] Fan Yuanyuan, Wu Haimei, Pang Lei, Lu Jianlong, Xia Bowen, Yang Xuhai. Effects of Straw Mulching on Wheat Yield in Different Ecological Regions in Northern Semi-Arid Areas of China Based on Meta Analysis [J]. Crops, 2020, 36(4): 143-149.
[4] Li Qiang, Kong Fanlei, Yuan Jichao. Effects of Interannual Meteorological Factors on Maize Dry Matter Accumulation and Yield in the Hilly Area of Southwest China [J]. Crops, 2020, 36(4): 150-157.
[5] Xie Jinlan, Lin Li, Li Changning, Luo Ting, Mo Zhanghong. Effects of Intercropping Mungbean Straw Returning on Sugarcane Growth and Nitrogen Metabolism under Nitrogen Fertilizer Reduction [J]. Crops, 2020, 36(4): 164-169.
[6] Hu Jifang. Effects of Water Control on Growth and Development and Yield of Different Upland Rice Varieties during Jointing-Booting Stage [J]. Crops, 2020, 36(4): 178-182.
[7] Chen Ying, Du Baozhi, Wang Wenxuan, Lu Cuihua, Liu Chun’an, Dai Guijin, Yu Guangxing, Liu Xianping, Gong Diankai. Investigation on the Pattern of Fertilizer and Density for Rice Stable Yield under Low Nitrogen Rate Cultivation in Different Regions of Liaoning Province [J]. Crops, 2020, 36(4): 183-187.
[8] Yang Yongqing, Gao Fangfang, Ma Yajun, Chen Xin, Zhang Jie. Effects of Different Fertilizer Treatments on Yield, Quality and Economic Benefit of Foxtail Millet in Dry Farming Area of Shanxi Province [J]. Crops, 2020, 36(4): 195-201.
[9] Zhang Qian, Li Yaofa, Wang Shulin, Wang Yan, Feng Guoyi, Lin Yongzeng, Liang Qinglong, Lei Xiaopeng, Qi Hong. Effects of Strip-Planting of Cotton-Wheat on Cotton Aphid [J]. Crops, 2020, 36(4): 206-210.
[10] Wang Zhongqiu, Ying Pengfei, Chen Mengtao, He Qiongying, Hu Xin. Analysis of Grain and Quality Traits of Chromosome Arm Substitution Lines of Triticum dicoccoides in the Background of Triticum aestivum [J]. Crops, 2020, 36(4): 37-44.
[11] Yang Bin, Yan Xue, Wen Hongwei, Wang Shuguang, Lu Lahu, Fan Hua, Jing Ruilian, Sun Daizhen. Study on the Evaluation of Stay-Green Traits of Wheat and Its Correlation with Yield-Related Traits under Different Water Conditions [J]. Crops, 2020, 36(4): 45-52.
[12] Chen Weiguo, Zhang Zheng, Shi Yugang, Cao Yaping, Wang Shuguang, Li Hong, Sun Daizhen. Drought-Tolerance Evaluation of 211 Wheat Germplasm Resources [J]. Crops, 2020, 36(4): 53-.
[13] Shan Zilong, Ban Jinfu, Zhao Yankun, Cao Qiao, Tian Guoying, He Mingqi, Gao Zhenxian. Detection of Quality-Related Genes in the Wheat Varieties Authorized in Hebei Province by KASP Markers [J]. Crops, 2020, 36(4): 64-71.
[14] Zhu Zhengbin, Yang yong, Feng Linhao, Lu Yan, Shen Xuelin, Liu Qiaoquan, Zhang Changquan. Study on Physicochemical Properties of Local Waxy Rice Varieties Yaxuenuo and Suyunuo from Taihu Lake Area [J]. Crops, 2020, 36(4): 91-98.
[15] Song Xiao, Huang Chenchen, Huang Shaomin, Zhang Keke, Yue Ke, Zhang Shuiqing, Guo Doudou, Zhang Yuting. Effects of Tillage and Organic Fertilization Modes on Soil Physical and Chemical Properties and Wheat Yield [J]. Crops, 2020, 36(3): 102-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!