Crops ›› 2020, Vol. 36 ›› Issue (4): 121-126.doi: 10.16035/j.issn.1001-7283.2020.04.017

Previous Articles     Next Articles

Correlation Analysis of Fiber Yield and Yield Components in Five Industrial Hemp Varieties (Lines)

Zhang Xiaoyan(), Wang Xiaonan, Cao Kun, Sun Yufeng()   

  1. Daqing Branch of Heilongjiang Academy of Sciences, Daqing 163319, Heilongjiang, China
  • Received:2019-12-13 Revised:2020-04-05 Online:2020-08-15 Published:2020-08-11
  • Contact: Sun Yufeng E-mail:zhangxylibin@163.com;sunyf888@163.com

Abstract:

Five industrial hemp varieties (lines) were used as research objectives. The correlation and path analysis were carried out between fiber yield and yield components, and the changes occurred in relation to fiber yield and yield components were also analyzed. The results showed that there were significant differences in the fiber yield per plant and the yield components among industrial hemp varieties (lines). Stem weight per plant was extremely significantly correlated with fiber yield per plant. The stem diameter, dry stem weight per plant and total fiber rate were significantly correlated with fiber yield per plant. The order of correlation coefficients was stem weight per plant (0.962) > total fiber rate (0.943) > stem diameter (0.917) > dry stem weight per plant (0.912) > plant height (0.808) > pull rate of dry stem (0.725). The regression equation of fiber yield per plant with stem weight per plant, dry stem weight per plant, total fiber rate, plant height and pull rate of dry stem reached significant level, and path analysis showed that the most direct contribution to the fiber yield was the stem weight per plant followed by the total fiber rate, but the effects of plant height, dry stem weight per plant and pull rate of dry stem on fiber yield per plant were mainly caused by the indirect effects of stem weight per plant and total fiber rate.

Key words: Industrial hemp, Variety (Line), Fiber yield, Yield components, Correlation analysis, Path analysis

Fig.1

Fiber yields per plant of different industrial hemp varieties (lines) Different lowercase letters indicate significant difference (P < 0.05)"

Table 1

Changes of fiber yield components in industrial hemp varieties (lines)"

品种(系)
Variety (Line)
株高
Plant height
(cm)
茎粗
Stem diameter
(cm)
单株原茎重
Stem weight
per plant (g)
单株干茎重
Dry stem weight
per plant (g)
干茎制成率
Pull rate of
dry stem (%)
全麻率
Rate of total
fiber (%)
火麻一号Huoma 1 216.50b 0.79c 19.11c 15.69d 82.12a 16.35c
汉麻1号Hanma 1 234.58a 0.95a 23.34a 20.46a 87.68a 21.40a
汉麻2号Hanma 2 221.57b 0.82bc 19.84bc 16.73cd 84.34a 19.12ab
汉麻5号Hanma 5 228.98a 0.90ab 21.35ab 18.87b 88.37a 17.34bc
品系3 Line 3 218.55b 0.85abc 20.98bc 18.15bc 86.52a 19.74a
变异系数Coefficient of variation (%) 3.374 6.495 7.739 10.319 2.989 10.604

Table 2

Correlation analysis of fiber yield per plant and yield components in industrial hemp varieties (lines)"

指标
Index
株高
Plant
height
茎粗
Stem
diameter
单株原茎重
Stem weight
per plant
单株干茎重
Dry stem weight
per plant
干茎制成率
Pull rate of
dry stem
全麻率
Rate of
total fiber
单株纤维产量
Fiber yield
per plant
株高Plant height 1
茎粗Stem diameter 0.936* 1
单株原茎重Stem weight per plant 0.903* 0.983** 1
单株干茎重Dry stem weight per plant 0.906* 0.960** 0.975** 1
干茎制成率Pull rate of dry stem 0.586 0.772 0.717 0.604 1
全麻率Rate of total fiber 0.626 0.736 0.820 0.757 0.592 1
单株纤维产量Fiber yield per plant 0.808 0.917* 0.962** 0.912* 0.725 0.943* 1

Table 3

Normal test output"

因变量
Dependent
variable
Kolmogorov-Smirnova Shapiro-Wilk
统计量
Statistic
自由度
df
Sig. 统计量
Statistic
自由度
df
Sig.
单株纤维产量
Fiber yield
per plant (y)
0.102 15 0.200* 0.991 15 0.998

Table 4

Output results of regression equation model"

模型
Model
相关系数
Correlation
coefficient
决定系数
Coefficient of
determination
调整系数
Coefficient
of adjust
标准估计误差
Error of standard
estimation
1 0.962a 0.925 0.920 0.21074
2 0.999b 0.998 0.997 0.03813
3 1.000c 1.000 1.000 0.00569
4 1.000d 1.000 1.000 0.00316
5 1.000e 1.000 1.000 0.00102

Table 5

Multivariate standard regression analysis of fiber yield per plant and yield components in industrial hemp varieties (lines)"

模型
Model
非标准化回归系数
Non-standardized regression coefficient
标准回归系数
Standard regression
coefficient
t Sig.
B 标准误差Standard error
1 常量Constant -5.080 0.067 - -7.580 0.201
单株原茎重Stem weight per plant 0.405 0.032 0.962 12.694 0.005**
2 常量Constant -4.801 0.123 - -39.132 0.033
单株原茎重Stem weight per plant 0.243 0.010 0.576 23.952 0.001**
全麻率Rate of total fiber 0.166 0.008 0.470 19.531 0.107
3 常量Constant -4.915 0.019 - -260.394 0.102
单株原茎重Stem weight per plant 0.223 0.002 0.529 127.912 0.013*
全麻率Rate of total fiber 0.166 0.001 0.469 131.282 0.032*
干茎制成率Pull rate of dry stem 0.632 0.027 0.068 23.091 0.131
4 常量Constant -4.699 0.044 - -106.901 0.041
单株原茎重Stem weight per plant 0.231 0.002 0.548 121.110 0.009**
全麻率Rate of total fiber 0.164 0.001 0.464 205.930 0.006**
干茎制成率Pull rate of dry stem 0.614 0.016 0.066 39.333 0.246
株高Plant height -0.002 0.014 -0.015 -5.061 0.024*
5 常量Constant -4.676 0.032 - -17 142 430.850 0.000
单株原茎重Stem weight per plant 0.219 0.001 0.520 8 429 152.609 0.003**
全麻率Rate of total fiber 0.165 0.001 0.467 31 115 942.350 0.000**
干茎制成率Pull rate of dry stem 0.656 0.010 0.070 5 206 773.594 0.332
株高Plant height -0.001 0.012 -0.015 -813 466.695 0.036*
单株干茎重Dry stem weight per plant 0.349 0.026 0.023 516 058.165 0.045*

Table 6

Path analysis of fiber yield per plant and yield components in industrial hemp varieties (lines)"

产量构成因素
Yield component
直接通径系数
Direct path coefficient
间接通径系数Indirect path coefficient 合计
Total
X1 X2 X3 X4 X5
X1 -0.015 - 0.4696 0.0208 0.0410 0.2923 0.8237
X2 0.520 -0.0135 - 0.0224 0.0502 0.3829 0.4420
X3 0.023 -0.0136 0.5070 - 0.0423 0.3535 0.8892
X4 0.070 -0.0088 0.3728 0.0139 - 0.2765 0.6544
X5 0.467 -0.0094 0.4624 0.0174 0.0414 - 0.5118
[1] Li H L . The origin and use of cannabis in eastern Asia linguistic-cultural implications. Economic Botany, 1973,28(3):293-301.
[2] 刘飞虎 . 工业大麻的基础与应用. 北京: 科学出版社, 2015.
[3] 孙宇峰, 张晓艳, 王晓楠 , 等. 汉麻籽油的特性及利用现状. 粮食与油脂, 2019,32(3):9-11.
[4] Struik P C, Amaducci S, Bullard M J , et al. Agronomy of fiber hemp (Cannabis sativa L.) in Europe. Industrial Crops and Products, 2000,11:107-118.
[5] Callaway J C A . More reliable evaluation of hemp THC levels is necessary and possible. Journal of Industrial Hemp, 2008,13:117-144.
[6] 张建春 . 汉麻综合利用技术. 北京: 长城出版社, 2006.
[7] 杨阳, 张云云, 苏文君 , 等. 工业大麻纤维特性与开发利用. 中国麻业科学, 2012,34(5):237-240.
[8] 杜光辉, 邓纲, 杨阳 , 等. 大麻籽的营养成分、保健功能及食品开发. 云南大学学报(自然科学版), 2017,39(4):712-718.
[9] 孙福来, 王绪芬, 张秀慧 . 高效环保型经济作物工业大麻及栽培技术. 中国种业, 2004(10):49-50.
[10] 刘翠翠, 果实 . 黑龙江省汉麻产业情况概述. 农场经济管理, 2018(6):43-44.
[11] 张晓艳, 孙宇峰, 曹焜 , 等. 黑龙江省工业大麻育种现状及展望. 作物杂志, 2019(3):15-19.
[12] 孙宇峰 . 纤维大麻高产栽培技术的研究现状. 中国麻业科学, 2017,39(3):153-158.
[13] 潘庭慧, 张振福, 李殿一 , 等. 亚麻纤维产量构成因素的分析. 中国麻作, 1996,18(3):29-31.
[14] 李明, 王克荣, 杨学 , 等. 亚麻纤维产量构成因素的相关与通径分析初报. 东北农业大学学报, 1996,27(1):30-33.
[15] 胡立勇, 彭定祥 . 苎麻产量构成因素的分析. 中国麻作, 1998,20(2):12-16.
[16] 熊和平, 蒋金根, 喻春明 , 等. 苎麻产量构成因素与产量的关系. 作物学报, 1998,24(2):156-160.
[17] 胡凤灵, 杨龙, 时萍 . 红麻纤维产量与产量构成因素的灰色关联度分析. 安徽农业科学, 2008,36(20): 8535, 8581.
[18] 徐益, 张列梅, 祁建民 , 等. 黄麻纤维产量与主要农艺性状的相关分析. 作物学报, 2018,44(6):859-866.
[19] 陈其本, 余立慧, 杨明 . 大麻栽培利用及发展对策. 北京: 电子科技大学出版社, 1993.
[20] 张利国, 张效霏, 房郁妍 , 等. 大麻纤维产量构成因素的相关分析初报. 黑龙江农业科学, 2014(1):31-33.
[21] 陆于, 罗倪生, 吕咏梅 . 大麻植株主要农艺性状与麻皮产量关系的初步探讨. 安徽农业科学, 1982(1):88-90.
[22] 唐慧娟, 臧巩固, 程超华 , 等. 工业大麻产量和品质性状的对应分析. 作物杂志, 2018(2):52-55.
[23] 孙宇峰, 田玉杰, 韩承伟 , 等. 火麻一号工业用大麻新品种高效生产技术示范. 黑龙江科技信息, 2016(31):129.
[24] 朱红彩, 范永胜, 王玲燕 , 等. 新麦32产量及其构成因素相关性分析和通径分析. 湖北农业科学, 2019,58(17):13-15,20.
[25] 张加强, 骆霞虹, 陈常理 , 等. 圆果种黄麻主要经济性状与纤维产量的相关及灰色关联分析. 中国麻业科学, 2015,37(2):70-74,79.
[26] 曹焜, 王晓楠, 孙宇峰 , 等. 播种期对两个工业大麻品种生长发育、农艺性状和产量的影响. 中国麻业科学, 2019,41(1):6-12.
[27] 刘青海, 毕君 . 大麻纤维产量与品质构成因素的相关性及适宜栽培密度的研究. 中国麻作, 1991(1):24-27.
[1] Wang Zhongqiu, Ying Pengfei, Chen Mengtao, He Qiongying, Hu Xin. Analysis of Grain and Quality Traits of Chromosome Arm Substitution Lines of Triticum dicoccoides in the Background of Triticum aestivum [J]. Crops, 2020, 36(4): 37-44.
[2] Yang Bin, Yan Xue, Wen Hongwei, Wang Shuguang, Lu Lahu, Fan Hua, Jing Ruilian, Sun Daizhen. Study on the Evaluation of Stay-Green Traits of Wheat and Its Correlation with Yield-Related Traits under Different Water Conditions [J]. Crops, 2020, 36(4): 45-52.
[3] Gao Jie,Li Qingfeng,Li Xiaorong,Feng Guangcai,Peng Qiu. Analysis of the Characteristics of Dry Matter Production and Light Energy Utilization of Waxy Sorghum Applied in Different Eras in Guizhou Province [J]. Crops, 2020, 36(1): 41-46.
[4] Wang Yanqing,Li Yongjun,Li Chunhua,Lu Wenjie,Sun Daowang,Yin Guifang,Hong Bo,Wang Lihua. Correlation and Path Analysis of the Main Agronomic Traits and Yield per Plant of Quinoa [J]. Crops, 2019, 35(6): 156-161.
[5] Liu Xingye,Xing Baolong,Wu Ruixiang,Wang Guimei,Liu Fei. Main Agronomic Traits Variation and Its Effects on Yield Composition of Mung Bean in Northern Shanxi Province [J]. Crops, 2019, 35(5): 69-75.
[6] Gao Jie,Li Qingfeng,Li Xiaorong,Feng Guangcai,Peng Qiu. Variation Analysis of Agronomic Traits of Waxy Sorghum Varieties (Lines) in Different Eras in Guizhou Province [J]. Crops, 2019, 35(4): 17-23.
[7] Zhang Xiaoyan,Sun Yufeng,Cao Kun,Jiang Ying,Hang Chengwei,Zhao Yue,Han Xicai,Wang Xiaonan. Status and Prospect of Industrial Hemp Breeding in Heilongjiang Province [J]. Crops, 2019, 35(3): 15-19.
[8] Jiang Ying,Feng Naijie,Wang Xiaonan,Han Xicai,Han Chengwei,Zhao Yue,Cao Kun,Sun Yufeng,Li Zhenwei. Screening and Identification of Male-Specific RAPD and SCAR Markers in Cannabis sativa L. (Industrial Hemp) [J]. Crops, 2019, 35(3): 66-72.
[9] Ren Honglei,Li Chunxia,Gong Shichen,Li Guoliang,Hu Guanghui,Wang Mingquan,Yang Jianfei. Genetic Correlation and Path Analysis of Yield and Agronomic Characteristics of Maize Hybrids in SPSS Software [J]. Crops, 2019, 35(3): 86-90.
[10] Chen Guangzhou,Wang Guangfu,Qu Jianzhou,Si Leiyong,Jin Yan,Xu Shutu,Xue Jiquan,Lu Haidong. Study on Grain Dehydration Rate and Correlation Analysis of Major Related Characters in Different Maize Inbred Lines [J]. Crops, 2018, 34(5): 33-39.
[11] Wu Ronghua,Zhuang Kezhang,Liu Peng,Zhang Chunyan. Response of Summer Maize Yield to Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[12] Bin Zhang,Jinxiu Li,Zhen Wang,Hao Feng,Jinbang Li. Correlation and Cluster Analysis of Agronomic Traits in Wheat Lines [J]. Crops, 2018, 34(3): 57-60.
[13] Huijuan Tang,Gonggu Zang,Chaohua Cheng,Qing Tang,Yujun Li,Lining Zhao. Correspondence Analysis of Yield and Quality Traits of Industrial Hemp (Cannabis sativa L.) [J]. Crops, 2018, 34(2): 52-55.
[14] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines) [J]. Crops, 2018, 34(1): 77-82.
[15] Ying Jiang,Yufeng Sun,Dongmei Pan,Qiuzhi Li. EMS Mutant Screening and RAPD Analysis on Industrial Hemp (Cannabis sativa L.) [J]. Crops, 2017, 33(6): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!