Crops ›› 2021, Vol. 37 ›› Issue (3): 149-154.doi: 10.16035/j.issn.1001-7283.2021.03.022

Previous Articles     Next Articles

Isolation, Screening, Phosphorus Solubilization and Plant Growth-Promoting Characteristics of Rhizosphere Halotolerant Fungi

Tan Haixia1(), Li Liyan2,3(), Du Yinghui2,3, Sun Shanshan2,3, Wang Lianlong1, Dong Xue1, Wang Yuxi1, Zhang Ying1   

  1. 1Hebei University of Environmental Engineering, Qinhuangdao 066000, Hebei, China
    2Leading Biological and Agricultural Limited Company, Qinhuangdao 066000, Hebei, China
    3Hebei Agricultural Biotechnology Technology Innovation Center, Qinhuangdao 066000, Hebei, China
  • Received:2020-07-06 Revised:2020-10-20 Online:2021-06-15 Published:2021-06-22

Abstract:

To obtain high-efficiency halotolerant phosphorus strains and provide high-quality bacteria fertilizer species resources for the development of saline soil, phosphate solubilizing fungus were isolated and screened from the rhizosphere soil of coastal halophytes.The results showed that five inorganic phosphorus strains and three organic phosphate solubilizing strains were isolated in rhizosphere soil of three halophytes from Beidaihe wetland and Caofeidian wetland, named C1-C7, G1, grown at 10% sodium chloride medium. The D/d values of the eight fungus ranged from 1.05 to 1.81. The effective phosphorus content was 26.61-4415.00mg/L in the inorganic phosphorus strains, which was 0.80-4371.10mg/L higher than CK; the effective phosphorus content was 1.96-5.79mg/L in organic phosphate solubilizing strains, which was -3.40-0.20mg/L higher than CK. There was a weak correlation between effective phosphorus content and D/d. The strain C1 could produce 4397.70mg/L available phosphate, meanwhile, C1 had the ability to promote plant growth with IAA secretion of 33.07mg/L. The strain C1 was identified as Penicillium oxalicum, and the effective phosphorus content between strains showed significant difference. Strain C1 was a highly effective phosphate-dissolving halotolerant fungi with growth-promoting activity. It could be considered as a key strain for the development of microbial fertilizer in saline-alkali land which had great potential to improve phosphorus utilization rate in moderate-to-severe saline soil by plant-microorganism.

Key words: Rhizosphere soil, Halotolerant fungi, Isolation, Phosphate solubilizing fungi, Growth-promoting

Table 1

Physical and chemical properties of the soil in the sampling sites"

采样地点
Sampling
site
碱解氮
Alkaline nitrogen
(mg/kg)
有效磷
Available phosphorus
(mg/kg)
速效钾
Quick-acting
potassium (mg/kg)
有机质
Organic matter
(g/kg)
水溶性盐
Water soluble
salt (‰)
pH
北戴河湿地Beidaihe wetland 33.21 14.35 271.00 5.95 4.50 8.56
曹妃甸湿地Caofeidian wetland 31.50 34.63 753.38 11.85 3.10 8.44

Table 2

Quantitative characteristics of halotolerant fungi in different plant root soils"

土壤来源
Soil source
真菌
Fungus
(×103cfu/g)
耐盐优势菌株数
Number of halotolerant fungi
采样地点
Sampling
site
盐地碱蓬Suaeda salsa 4.52 2 北戴河湿地
盐角草
Salicornia europaea
5.05 3 北戴河湿地
碱蓬Suaeda glauca 4.00 5 曹妃甸湿地
盐地碱蓬Suaeda salsa 61.25 6 曹妃甸湿地

Table 3

Phosphate-solubilizing capacity of inorganic phosphate solubilizing fungi"

菌株Fungus D (mm) d (mm) D/d 有效磷含量Available phosphorus (mg/L) 来源Source 采样地Sampling site
CK1 - - - 26.60±0.26e - -
C1 19.0±2.0 12.0±2.0 1.60±0.21 4397.70±17.60a 碱蓬 曹妃甸湿地
C2 18.3±1.5 16.3±2.1 1.13±0.08 27.40±0.79e 碱蓬 曹妃甸湿地
C3 18.0±2.0 15.3±3.2 1.19±0.12 1715.60±0.45c 盐地碱蓬 曹妃甸湿地
C4 15.0±2.7 10.3±0.6 1.46±0.30 1803.60±5.73b 盐地碱蓬 曹妃甸湿地
G1 5.3±1.5 3.3±0.5 1.58±0.22 1662.30±0.45d 盐角草 北戴河湿地

Table 4

Phosphate-solubilizing capacity of organic phosphate solubilizing fungi"

菌株Fungi D (mm) d (mm) D/d 有效磷含量Available phosphorus (mg/L) 来源Source 采样地Sampling site
CK2 - - - 5.50±0.08a - -
C5 36.7±1.2 32.0±2.0 1.15±0.02 5.70±0.09a 碱蓬 曹妃甸湿地
C6 45.3±2.5 34.0±4.4 1.34±0.10 2.10±0.14c 盐地碱蓬 曹妃甸湿地
C7 42.7±1.5 24.3±1.5 1.76±0.16 4.90±0.05b 盐地碱蓬 曹妃甸湿地

Fig.1

The correlation between D/d of inorganic phosphorus fungi (a) and organic phosphate fungi (b) and soluble phosphorus content"

Table 5

IAA secretion of halotolerant fungi"

菌株编号
Fungi number
显色反应
Color rendering
reaction
IAA分泌量
IAA secretion
amount (mg/L)
C1 +++ 33.07±0.55a
C2 ++ 20.87±0.56b
C3 ++ 17.44±1.09b
C4 + 6.64±0.22c
C5 ++ 15.67±0.90b
C6 - -
C7 + 7.23±0.16c
G1 - -

Fig.3

Phylogenetic tree of strain C1 based on ITS gene sequences similarity GenBank accession numbers of aligned sequences are shown in the brackets. The bootstrap values are shown at the node. The length of the scale is 0.0005 nucleotide replacement rate"

[1] 栗丽, 李廷亮, 孟会生 , 等. 菌剂与肥料配施对矿区复垦土壤养分及微生物学特性的影响. 应用与环境生物学报, 2016,22(6):1156-1160.
[2] Illmer P, Schinner F . Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biology and Biochemistry, 1995,27(3):257-263.
doi: 10.1016/0038-0717(94)00190-C
[3] 张燕, 孙燕, 王江帆 , 等. “微生物+复合型土壤修复技术”的作用机理. 节能与环保, 2019(4):56-57.
[4] 李豆豆, 尚双华, 韩巍 , 等. 一株高效解磷真菌新菌株的筛选鉴定及解磷特性. 应用生态学报, 2019,30(7):2384-2392.
[5] 乔志伟, 洪坚平, 谢英荷 , 等. 一株石灰性土壤强溶磷真菌的分离鉴定及溶磷特性. 应用与环境生物学报, 2013,19(5):873-877.
[6] 梁艳琼, 雷照鸣, 贺春萍 , 等. 一株溶磷真菌的分离鉴定及其溶磷能力的初步研究. 热带作物学报, 2011,32(6):1116-1121.
[7] 张丽珍, 樊晶晶, 牛伟 , 等. 盐碱地柠条根围土中黑曲霉的分离鉴定及解磷能力测定. 生态学报, 2011,31(24):7571-7578.
[8] 冯瑞章, 姚拓, 周万海 , 等. 不同生存环境和磷酸盐对4株溶磷菌溶磷能力的影响. 应用与环境生物学报, 2009,15(6):856-860.
[9] 学平, 任加云, 邹美玲 , 等. 一株耐盐解磷菌的解磷能力及对玉米敏感期生长的影响. 水土保持研究, 2015,22(5):276-278.
[10] 姜焕焕, 祁佩时, 王通 , 等. 盐碱地解磷真菌的分离鉴定及性能研究. 土壤通报, 2018,49(4):856-861.
[11] 江红梅, 殷中伟, 史发超 , 等. 一株耐盐溶磷真菌的筛选、鉴定及其生物肥料的应用效果. 植物营养与肥料学报, 2018,24(3):728-742.
[12] 杨榕, 王敬敬, 徐松 , 等. 溶磷真菌的筛选及耐盐特性分析. 微生物学通报, 2018,45(10):2142-2151.
[13] 范延辉, 王君, 刘雪红 , 等. 一株耐盐解磷真菌的筛选、鉴定及其发酵优化. 土壤通报, 2015,46(2):362-367.
[14] 白文娟, 胡蓉蓉, 章家恩 , 等. 玉米根际溶磷细菌的分离、筛选及溶磷能力研究. 华南农业大学学报, 2013,34(2):167-176.
[15] 陈越, 李虎林, 朱诗苗 , 等. 产吲哚乙酸(IAA)促生菌的分离鉴定及对烟草种子萌发和幼苗生长发育的影响. 作物杂志, 2020(2):176-181.
[16] 崔月贞, 万志文, 冯疆蓉 , 等. 东祁连山高寒草地优势牧草内生细菌产IAA能力的研究. 草地学报, 2016,24(3):618-623.
[17] Glickmann E, Dessaux Y . A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 1995,61(2):793-796.
doi: 10.1128/aem.61.2.793-796.1995
[18] 李引, 虞丽, 李辉信 , 等. 一株花生根际促生菌的筛选鉴定及其特性研究. 生态与农村环境学报, 2012,28(4):416-421.
[19] 薛应钰, 叶巍, 杨树 , 等. 一株溶磷菌的分离鉴定及溶磷促生作用. 干旱地区农业研究, 2019,37(4):253-262.
[20] 魏景超 . 真菌鉴定手册. 上海: 上海科学技术出版社, 1979.
[21] 何迪, 耿丽平, 郭佳 , 等. 草酸青霉菌HB1溶磷能力及作用机制. 农业工程学报, 2020,36(2):255-265.
[22] 朱诗苗 . IAA促生菌的分离鉴定及对烟草种子萌发与烟苗生长发育的影响. 延吉: 延边大学, 2019.
[23] 黄敏, 吴金水, 黄巧云 , 等. 土壤磷素微生物作用的研究进展. 生态环境, 2003(3):366-370.
[1] Chen Yue,Li Hulin,Zhu Shimiao,Yan Han,Lang Bin,Ji Wenxiu. Isolation and Identification of IAA - Producing Rhizobacteria and Its Effects on Seed Germination and Seedling Growth of Tobacco [J]. Crops, 2020, 36(2): 176-181.
[2] Xie Linyan,Di Yining,Liu Lufeng,Wu Qinglian,Shen Xianyue,Xu Rong,Meng Yu,He Lilian,Li Fusheng. Isolation and ITS Sequence Identification of the Pathogen Causing Red Rot Disease on Sugarcane [J]. Crops, 2019, 35(5): 196-199.
[3] Lilei Guo,Jialin Zhu,Shixian Sun,Shuo Yan. Biosafety of Transgenic Crop: Research and Constraint of Potential Ecological Risk of Gene Flow [J]. Crops, 2019, 35(2): 8-14.
[4] Shuang Qiu,Shuangdui Yan,Lijun Liu. Tolerance to Low Phosphorus by Different Foxtail Millet Varieties [J]. Crops, 2017, 33(2): 139-144.
[5] Beibei Wang,Jizhi Jiang,Ying Li,Anqi Wan,Chunshuang Gui,Yingju Huang,Zhihui Yang,Jiehua Zhu. Comparison of Isolation Efficiency of Phytophthora infestans with Two Antibiotics Formulas [J]. Crops, 2016, 32(5): 160-166.
[6] Yanrui Xu,Zhijun Fang,Xiaoping Lu,Chunhua Mu,Qiuping Fan,Lujiang Hao. Isolation and Identification of Endophytic Bacteria from Roots of Four Inbred Lines in Maize [J]. Crops, 2016, 32(4): 112-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!