Crops ›› 2022, Vol. 38 ›› Issue (3): 187-193.doi: 10.16035/j.issn.1001-7283.2022.03.027

Previous Articles     Next Articles

Effects of Different Fertilizer Types on Tobacco Planting Soil and Quality of Flue-Cured Tobacco

Yang Yingyue1(), Liu Hui1, Wang Longfei1, Zhao Zhe1, Feng Xiaohu2, Lai Miao1, Zhao Mingqin1()   

  1. 1College of Tobacco, Henan Agricultural University/Flavors and Fragrance Engineering and Technology Research Center of Henan Province, Zhengzhou 450002, Henan, China
    2Fuzhou Branch of Jiangxi Province Tobacco Company, Fuzhou 344000, Jiangxi, China
  • Received:2021-04-29 Revised:2021-06-23 Online:2022-06-15 Published:2022-06-20
  • Contact: Zhao Mingqin E-mail:yyy13027746132@163.com;zhaomingqin@126.com

Abstract:

To investigate the effects of different fertilizer types on soil nutrients and the quality of flue-cured tobacco, the effects of conventional fertilization on soil (CK), peat (T1), microbial agents (T2) and high-carbon fertilizers (T3) were examined on the physical and chemical properties, microbial amount and enzyme activity of the soil, root activity of the tobacco plant and chemical composition of the leaves and neutral flavor-causing substances after baking were analyzed. The results showed that compared with CK, T1 treatment significantly increased soil nutrient levels, followed by T2 and T3 treatments, and T1 treatment reduced soil bulk density and increased soil porosity. During tobacco growth, T1 treatment significantly increased the number of soil microorganisms, enhanced soil enzyme activity, and promoted root activity of tobacco plants, followed by T2 and T3 treatments. With T1 and T3 treatments, the total sugar and potassium content of the flue-cured tobacco leaves was higher, the chemical composition was balanced, and the level of neutral flavor compounds was higher. Overall, the three fertilizers could improve the tobacco planting soil and the quality of tobacco leaves, especially peat.

Key words: Peat, High-carbon base fertilizer, Microbial agent, Tobacco planting soil, Quality of flue-cured tobacco

Table 1

Effects of different fertilizer types on soil physical and chemical properties after harvest"

处理
Treatment
含水量
Moisture content
(%)
容重
Bulk density
(g/cm3)
孔隙度
Porosity
(%)
碱解氮
Alkali-hydrolyzed
nitrogen (mg/kg)
速效磷
Available phosphorus
(mg/kg)
速效钾
Available potassium
(mg/kg)
有机质
Organic matter
(g/kg)
CK 19.94±1.14b 1.25±0.04a 52.64±1.43ab 61.86±1.59c 16.13±0.45b 302.03±10.06a 5.77±0.29b
T1 17.27±1.08b 1.22±0.04a 53.54±1.83a 70.69±2.90a 27.16±0.82a 325.28±18.00a 6.34±0.47a
T2 26.08±1.79a 1.29±0.10a 51.25±1.19c 67.21±2.67b 26.27±0.71a 314.75±12.43a 6.18±0.59a
T3 25.11±1.18a 1.29±0.09a 51.36±1.35bc 68.37±2.73b 25.50±0.56a 323.35±15.51a 6.29±0.53a

Fig.1

Effects of different fertilizer types on the flora of soil Different lowercase letters indicate significant difference (P < 0.05), the same below"

Fig.2

Effects of different fertilizer types on soil enzyme activities"

Fig.3

Effects of different fertilizer types on root activity of flue-cured tobacco"

Table 2

Effects of different fertilizer types on conventional chemical components of flue-cured tobacco"

等级
Level
处理
Treatment
总糖
Total sugar
(%)
烟碱
Nicotine
(%)

Chlorine
(%)

Potassium
(%)
还原糖
Reducing sugar
(%)
蛋白质
Protein
(%)
两糖比
Ratio of total sugar
to reducing sugar
糖碱比
Ratio of total sugar
to nicotine
B2F CK 16.35±0.94b 3.40±0.44a 0.34±0.03c 1.88±0.09b 14.87±0.68b 5.47±0.17ab 0.91±0.05b 4.81±0.64b
T1 22.33±1.35a 3.52±0.40a 0.56±0.04b 2.43±0.15a 20.13±1.76a 5.17±0.09bc 0.90±0.08b 6.35±0.97a
T2 15.53±1.68b 3.45±0.62a 0.68±0.06ab 2.19±0.25a 15.04±0.67b 5.80±0.08a 0.97±0.07ab 4.50±0.56b
T3 18.25±1.16b 2.63±0.36a 0.70±0.08a 2.36±0.17a 18.02±0.91ab 4.95±0.15c 0.99±0.08a 6.95±0.93a
C3F CK 18.95±0.17b 2.61±0.34a 0.42±0.02a 1.89±0.10c 18.08±0.78b 4.97±0.17a 0.95±0.06ab 7.27±1.03b
T1 22.60±1.06a 1.90±0.14b 0.56±0.04a 2.71±0.09a 22.08±1.44a 4.97±0.11a 0.98±0.05a 11.90±1.34a
T2 18.76±0.96b 2.87±0.51a 0.59±0.08a 2.29±0.07b 18.12±0.87b 4.86±0.10a 0.97±0.13a 6.54±0.97b
T3 19.45±0.90b 1.74±0.26b 0.48±0.05a 2.68±0.11a 17.71±0.69b 4.52±0.16b 0.91±0.09b 11.16±1.10a

Table 3

Effects of different fertilizer types on neutral aroma components of flue-cured tobacco μg/g"

中性致香成分
Neutral aroma component
中部叶Middle leaf 上部叶Upper leaf
CK T1 T2 T3 CK T1 T2 T3
类胡萝卜素降解产物
Carotenoid degradation products
巨豆三烯酮1 2.81 3.36 2.47 2.49 4.02 3.83 3.85 3.50
巨豆三烯酮2 11.26 14.09 10.10 9.36 17.41 15.65 16.17 13.29
巨豆三烯酮3 4.38 3.67 3.41 5.88 7.53 7.84 6.46 9.72
巨豆三烯酮4 13.57 18.33 13.42 12.19 22.19 17.93 19.64 18.04
巨豆三烯酮总量 32.02 39.45 29.40 29.92 51.15 45.25 46.12 44.55
氧化异佛尔酮 0.10 0.08 0.10 0.08 0.10 0.10
芳樟醇 0.56 0.64 0.59 0.56 0.89 0.94 0.85 0.84
β-大马酮 21.28 21.17 22.54 23.18 15.32 15.17 16.72 17.16
β-二氢大马酮 15.83 18.33 13.14 15.23 18.40 17.45 15.71 18.71
香叶基丙酮 3.58 3.54 2.88 2.68 3.76 4.36 4.76 3.66
二氢猕猴桃内酯 3.18 3.76 3.06 3.87 4.85 5.01 5.03 4.68
3-羟基-β-二氢大马酮 4.22 5.76 2.44 3.80 4.38 5.60 5.75 5.27
螺岩兰草酮 0.72 0.68 0.91 0.65 1.96 2.26 4.78 1.72
法尼基丙酮 13.53 14.42 11.35 10.29 12.10 13.04 14.35 11.16
6-甲基-5-庚烯-2-醇 1.40 1.64 1.31 1.15 1.55 1.77 1.94 1.67
6-甲基-5-庚烯-2-酮 0.49 0.47 0.74 0.48 0.92 0.66 0.73 0.50
小计 96.81 109.96 88.44 91.91 115.36 111.61 116.74 110.02
类西柏烷降解产物
Degradation products of cyprinoid
茄酮 37.41 36.89 40.61 28.73 26.19 30.38 37.09 33.18
美拉德反应产物
Maillard reaction products
糠醛 15.18 19.56 17.68 18.17 23.50 22.01 22.79 21.73
糠醇 2.01 2.74 3.09 3.09 4.17 3.58 2.39 3.33
2-乙酰基呋喃 0.43 0.49 0.94 0.45 1.31 0.76 0.59 1.30
5-甲基糠醛 2.10 2.59 2.24 2.04 4.39 4.38 3.80 3.50
2-乙酰基吡咯 0.87 1.16 0.83 0.85 1.06 0.90 1.11 0.96
小计 20.59 26.54 24.78 24.60 34.43 31.63 30.68 30.82
芳香族氨基酸降解类
Degradation of aromatic amino acids
苯甲醛 0.47 0.50 0.76 0.44 1.26 0.99 0.89 0.82
苯甲醇 13.36 13.45 10.36 13.46 20.05 15.40 16.40 16.67
苯乙醛 2.74 4.19 3.64 1.90 5.39 6.17 5.84 3.86
苯乙醇 4.62 7.07 4.89 4.64 12.05 9.81 8.36 8.61
小计 21.19 25.21 19.65 20.44 38.75 32.37 31.49 29.96
新植二烯Neophytadiene 新植二烯 923.04 1033.00 913.99 1010.00 817.90 891.75 866.11 946.00
中性香气物质总量Total amount of neutral aroma components 1099.03 1231.60 1087.48 1175.66 1032.61 1097.75 1082.09 1149.97
[1] 王东胜, 刘贯山, 李章海. 烟草栽培学. 合肥: 中国科技大学出版社, 2002.
[2] 赵晓会. 不同培肥及改良措施对烟田土壤性质及烟草品质影响的研究. 杨凌:西北农林科技大学, 2011.
[3] 时安东, 李建伟, 袁玲. 轮间作系统对烤烟产量、品质和土壤养分的影响. 植物营养与肥料学报, 2011, 17(2):411-418.
[4] 邓阳春, 黄建国. 长期连作对烤烟产量和土壤养分的影响. 植物营养与肥料学报, 2010, 16(4):840-845.
[5] 赵成凤, 丁灿, 徐兴阳, 等. 不同肥料和生物菌剂对烤烟农艺性状及产质量的影响. 昆明学院学报, 2018, 40 (6):12-18.
[6] 房嫚嫚, 张志刚, 董春娟, 等. 国内外蔬菜育苗用草炭理化特性比较分析. 中国蔬菜, 2012(10):56-59.
[7] 唐立松, 王周琼, 张佳宝. 草炭保水机制的初步研究. 干旱区研究, 2002, 19(2):47-51.
[8] 宋亮. 高碳基土壤修复肥对土壤养分及烤烟产质量的影响. 郑州:河南农业大学, 2016.
[9] Marris E. Putting the carbon back: black is the new green. Nature, 2006, 442(7103):624-626.
doi: 10.1038/442624a
[10] Maior J, Lehmann J, Rondon M, et al. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Global Change Biology, 2010, 16(4):1366-1379.
doi: 10.1111/j.1365-2486.2009.02044.x
[11] 毛丹丹. 草炭对丰都植烟土壤和烟株生长及产质量的影响. 福州:福建农林大学, 2018.
[12] 路丹, 张得平, 梁永进, 等. 不同用量高碳基有机肥对烤烟生长及产质量的影响. 贵州农业科学, 2019, 47(10):23-28.
[13] 朱金峰, 王小东, 郭传滨, 等. 施用微生物菌剂对土壤关键酶活性和烤烟根系生长的影响. 江西农业学报, 2015, 27(9):31-35.
[14] 赵海明. 牡丹江地区现代烟草农业发展研究. 长春:吉林大学, 2013.
[15] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005.
[16] 林先贵. 土壤微生物研究原理与方法. 北京: 高等教育出版社, 2010.
[17] 王瑞新, 韩富根, 杨素勤, 等. 烟草化学品质分析法. 北京: 中国农业出版社, 2003.
[18] 史宏志, 邸慧慧, 赵晓丹, 等. 豫中烤烟烟碱和总氮含量与中性香气成分含量的关系. 作物学报, 2009, 35(7):1299-1305.
[19] 郭群召, 殷英. 草炭对烟田土壤理化性状及对烤烟生长发育、烟叶产质的影响. 耕作与栽培, 2005(1):38-39.
[20] 宋亮, 任天宝, 李敏, 等. 不同生物炭用量对湘西植烟土壤养分的影响. 河南农业科学, 2017, 46(2):43-48.
[21] 李鹏. 草炭对土壤理化性质及烟叶品质的影响. 长沙:湖南农业大学, 2012.
[22] 单鸿宾, 梁智, 王纯利, 等. 棉田连作对土壤微生物及酶活性的影响. 中国农业科技导报, 2009, 11(1):113-117.
[23] 陈尧, 郑华, 石俊雄, 等. 施用化肥和菜籽粕对烤烟根际微生物的影响. 土壤学报, 2012, 49(1):208-213.
[24] Pulleman M, Creaner R, Hamer U, et al. Soil biodiversity, biological indicators and soil ecosystem services-an overview of European approaches. Current Opinion in Environmental Sustainability, 2012, 4(5):529-538.
doi: 10.1016/j.cosust.2012.10.009
[25] 陈敏, 杜相革. 生物炭对土壤特性及烟草产量和品质的影响. 中国土壤与肥料, 2015(1):80-83.
[26] 尹淑丽, 张丽萍, 张根伟, 等. 复合微生态菌剂对黄瓜根际土壤微生物数量及酶活的影响. 微生物学杂志, 2012, 32(1):23-27.
[27] 田小明, 李俊华, 王成, 等. 连续3年施用生物有机肥对土壤养分、微生物生物量及酶活性的影响. 土壤, 2014, 46(3):481-488.
[28] 刘海, 杜如万, 赵建, 等. 施肥对烤烟根际土壤酶活性及细菌群落结构的影响. 烟草科技, 2016, 49(10):1-8.
[29] 杨万勤, 王开运. 土壤酶研究动态与展望. 应用与环境生物学报, 2002, 8(5):564-570.
[30] 段雪娇. 微生物菌剂对水稻土土壤微生物数量及酶活性的影响. 哈尔滨:东北农业大学, 2015.
[31] 张璐, 阎海涛, 任天宝, 等. 有机物料对植烟土壤养分、酶活性和微生物群落功能多样性的影响. 中国烟草学报, 2019, 25(2):55-62.
[32] 张志浩, 陈思蒙, 任天宝, 等. 高碳基肥对烤烟生长及土壤微生物碳代谢多样性特征的影响. 中国土壤与肥料, 2019(1):79-86.
[33] 马新明, 席磊, 熊淑萍, 等. 大田期烟草根系构型参数的动态变化. 应用生态学报, 2006, 17(3):373-376.
[34] 景延秋, 袁秀秀, 詹辉, 等. 基追肥比例和追肥次数对烤烟化学成分及中性致香物质的影响. 西南农业学报, 2016, 29(7):1654-1659.
[1] Tan Zhiyong, Shen Xiaoxiong, Liu Jie, Tan Daxin, Bai Bin, Zhou Xinghua, Zhao Hui. Spatial Variation Characteristics of Main Nutrients in Tobacco Planting Soil in Tongren City, Guizhou Province [J]. Crops, 2022, 38(2): 189-194.
[2] Yang Yongqing, Gao Fangfang, Ma Yajun, Chen Xin, Zhang Jie. Effects of Different Fertilizer Treatments on Yield, Quality and Economic Benefit of Foxtail Millet in Dry Farming Area of Shanxi Province [J]. Crops, 2020, 36(4): 195-201.
[3] Fang Chen,Shixiao Xu,Xiaohui Li,Chao Liu,Jianfei Zhou,Yuan Wang,Pei Tian,Tiezhao Yang. Construction of Molecular Fingerprinting and Analysis of Genetic Diversity for 80 Tobacco (Nicotiana tabacum) Germplasms Based on SSR Markers [J]. Crops, 2019, 35(1): 22-31.
[4] Na Chang,Xuejiao Zhang,Lulu Ma,Jingjing Shi,Wei Jia,Yongzhi Qi,Baozhong Yin,Wenchao Zhen. Effects of Microbial Agents on Growth and Prevention of Soil Borne Diseases of Wheat [J]. Crops, 2017, 33(1): 155-160.
[5] Qingli Liu,Zhihong Li,Yanli Xu,Junying Li,Yungui Zhang. Research on the Cooperative Technology of Flue-Cured Tobacco based on Transplanting-Date, Fertilization and Variety in Yunnan [J]. Crops, 2016, 32(6): 128-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!