Crops ›› 2022, Vol. 38 ›› Issue (3): 9-19.doi: 10.16035/j.issn.1001-7283.2022.03.002

Previous Articles     Next Articles

Genetic Characteristics of MAGIC Population and Its Application in Crop Stress Tolerance

Rong Kewei1,2(), Liu Bojuan2, Lu Yuelei1,2, Chen Yong2, Luo Ping1,2, Zhao Kang1, Hao Zhuanfang1,2(), Gao Wenwei1()   

  1. 1College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-07-30 Revised:2021-12-01 Online:2022-06-15 Published:2022-06-20
  • Contact: Hao Zhuanfang,Gao Wenwei E-mail:rongkewei@yeah.net;haozhuanfang@163.com;gww@xjau.edu.cn

Abstract:

Multi-parent advanced generation intercross (MAGIC) is a new generation population for genetic mapping and breeding selection. It was originally derived from an idea for exploring the genetic basis of quantitative traits in animals and humans, which aimed to construct a generically complex recombined selfing population based on multiple parents, and hereafter to popularize its application to plants. Now, the MAGIC population has been applied to crop genetics and breeding, by creating a population that contains a large number of various interrelated lines. The fundamental benefit of the MAGIC population was the diversity of its genetic gene pools, which could give a large amount of germplasm for selection and precise mapping. After numerous generations of recombinations, lines with high performance could be directly or indirectly selected and used in breeding initiatives. Furthermore, it was primarily used for the exact genetic mapping of complex quantitative trait locus (QTL), particularly for qualities like stress tolerance. As the characteristics of MAGIC population were suitable for studying the stress tolerance controlled by QTL quantitative trait loci, in this review, we summarized its origination, construction points, genetic characteristics and recent research applications in stress tolerance, and further to discuss its new prospects.

Key words: MAGIC population, Quantitative trait locus, Genetic variation, Crops stress tolerance

Fig.1

Development and improvement of targeted populations in crop genetic research"

Table 1

Application of MAGIC group in plant genetics research"

作物
Crop
类型
Type
亲本选择
Parental selection
杂交方式
Hybridization
群体规模
Group size
基因型鉴定
Genotyping
研究性状
Research trait
分析方法
Analytical method
参考文献
Reference
拟南芥
Arabidopsis

19亲本
随机杂交
1026 F4
1260 SNPs
抽薹期
QTL
[26]
水稻Rice 籼稻 4亲本DC1 双列杂交 495 F6 6K SNP芯片 籽粒产量性状、穗相关性状、分蘖相关性状、抽穗期、苗期和株高
GWAS [23,28-31]
4亲本DC2 双列杂交 525 F6
8亲本
Funnel杂交
668 F6
55K SNP芯片,
GBS
籼稻 8亲本 Funnel杂交 1328 S7 GBS: 17387 SNP 产量性状、稻米品质、开花期、株高、粒型、抗旱性、耐涝性、耐盐性、抗病性(稻瘟病、白叶枯病、褐斑病)

QTL,GWAS [32-34]
MAGIC PLUS 144 S8
MAGIC PLUS
DH系

76 DH
粳稻 8亲本 Funnel杂交 500 S5
籼―粳 GLOBAL MAGIC 1402 S7
小麦Wheat



春小麦



4亲本



Funnel杂交



1579 F6



826 DArTs、283SNPs、53SSRs,9K SNP芯片,90K SNP芯片 株高、籽粒重、
胚芽鞘长度


LMC,QTL



[13,35-36]



冬小麦
8亲本
Funnel杂交
1091 F7
90K SNP芯片
产量、开花期、
病害和株高
LMC,QTL
[37-38]
全麦粉
4亲本
Funnel杂交
332 F6
SSR
产量性状、
抗白粉病
QTL,LMC
[39]
欧洲
小麦
60亲本
随机杂交
1000 S4
9K SNP芯片
抽穗期
LDA,GWAS
[40]
14个KASPar SNP
大麦
Hordeum
8亲本 Funnel杂交 5000 DH 9K SNP芯片 开花期 QTL [41]
8亲本 Funnel杂交 642 F5 9K SNP芯片 黄斑病 LMC,QTL [42]
棉花Cotton 陆地棉 11亲本 随机杂交 547 F5 GBS 纤维品质 GWAS,QTL [43]
8亲本
随机杂交
960 MLs
SLAF-seq
开花期、株型、
果枝数
GWAS,QTL
[44]
11亲本 随机杂交 550 RIL 47K SNP芯片 株高、茎秆质量 GWAS,QTL [45]
高粱
Sorghum

29亲本
随机杂交
1000 F6
GBS
株高
GWAS,QTL
[46]
作物
Crop
类型
Type
亲本选择
Parental selection
杂交方式
Hybridization
群体规模
Group size
基因型鉴定
Genotyping
研究性状
Research trait
分析方法
Analytical method
参考文献
Reference
烟草
Tobacco

8亲本
双列杂交
600 F4
430K 芯片
株型、烟叶品质
GWAS
[47]
玉米
Maize

8亲本
Funnel杂交
1636 F6
GBS
开花期、株高、
穗位高
LMC,AM,QTL [48]
4亲本
Funnel杂交
1149 S3
118K SNP 芯片
株高、穗高、散
粉期、吐丝期
QTL,GWAS
[49]
8亲本
Funnel杂交
401 RIL
56K SNP 芯片
苗重、苗长和
黄萎病
QTL,NAM
[50]
8亲本
Funnel杂交
700F6
110K SNP
芯片
镰孢菌穗腐病
LMC,AM,QTL [51]
8亲本
Funnel杂交
406 RIL
100K SNP
芯片,GBS
发芽率、叶绿素
和出苗期
GWAS,QTL
[52]
8亲本
Funnel杂交
368 MLs
1000K SNP芯片,GBS 籽粒含油量
GWAS,QTL
[53]
16亲本
Funnel杂交
513 RIL
500K SNP芯片
株高、叶形态、
开花期、穗大小
GWAS
[54]
4亲本
Funnel杂交
1044 F6
50K SNP芯片
产量、吐丝期、
株高
QTL,AM
[55]
油菜
Brassica napus
甘蓝型
8亲本
随机杂交
680 F6

始花期、抗病性
SSD
[56]

Fig.2

Construction design of eight parents maize MAGIC population ""indicates that the construction of the quaternion hybrid B96×HP301 failed in F1 generation, and the ninth parent CML91 was introduced instead of B96 as a two-way cross of B73×CML91"

Fig.3

Function and application prospects of MAGIC population"

Fig.4

MAGReS approach for development of breeding lines"

[1] 卢宝荣, 朱有勇, 王云月. 农作物遗传多样性农家保护的现状及前景. 生物多样性, 2002(4):409-415.
doi: 10.17520/biods.2002056
[2] 李晓方. 农作物多基因型种群育种及种子生产技术体系. 遗传, 2012, 34(3):382.
[3] 罗开, 周永明, 张椿雨, 等. 甘蓝型油菜MAGIC群体的遗传结构分析及应用. 武汉:华中农业大学, 2015.
[4] Thornsberry J M, Goodman M M, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics, 2001, 28(3):286-289.
pmid: 11431702
[5] Bentsink L, Hanson J, Coltrane C, et al. Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9):4264-4269.
[6] Ballini E, Morel J B, Droc G, et al. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Molecular Plant-microbe Interactions:MPMI, 2008, 21(7):859-868.
doi: 10.1094/MPMI-21-7-0859
[7] Yu J M, Holland J B, McMullen M D, et al. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008, 178(1):539-551.
doi: 10.1534/genetics.107.074245
[8] Remington D L, Thornsberry J M, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98:11479-11484.
[9] Bandillo N, Raghavan C, Muyco P A, et al. Multi-parent advanced generation inter-cross (MAGIC) populations in rice:progress and potential for genetics research and breeding. Rice, 2013, 6(1):1-15.
doi: 10.1186/1939-8433-6-1
[10] Mason A S, Batley J, Bayer P E, et al. High-resolution molecular karyotyping uncovers pairing between ancestrally related Brassica chromosomes. The New phytologis, 2014, 202(3):964-974.
doi: 10.1111/nph.12706
[11] Rakshit S, Rakshit A, Patil J V. Multiparent intercross populations in analysis of quantitative traits. Journal of Genetics, 2012, 91(1):111-117.
doi: 10.1007/s12041-012-0144-8 pmid: 22546834
[12] Cavanagh C, Morell M, Macky I, et al. From mutations to MAGIC:resources for gene discovery,validation and delivery in crop plants. Current Opinion in Plant Biology, 2007, 11(2):2-3.
[13] Cavanagh C R, Chao S M, Wang S C, et al. Genome-wide comparative diversity uncovers multiple targets of selection for inprovement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(20):8057-8062.
[14] Huang X Q, Paulo M J, Boer M, et al. Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(11):4488-4493.
[15] Churchill G A, Airey D C, Allayee H, et al. The Collaborative Cross,a community resource for the genetic analysis of complex traits. Nature Genetics. 2004, 36(11):1133-1137.
pmid: 15514660
[16] Huang X H, Wei X H, Zhao Q, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11):961-967.
doi: 10.1038/ng.695
[17] Mott R, Talbot C J, Turri M G, et al. A method for fine mapping quantitative trait loci in outbredanimal stocks. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(23):12649-12654.
[18] Smallwood T L, Gatti D M, Weinstock G M, et al. High-resolution genetic mapping in the diversity outbred mouse population identifies Apobec1 as a candidate gene for atherosclerosis. G3:Genes, Genomes,Genetics, 2014, 4(12):2353-2363.
[19] King E G, Merkes C M, McNeil C L, et al. Genetic dissection of a model complex trait using the Drosophila Synthetic population resource. Cold Spring Harbor Laboratory Press, 2012, 22(8):1558-1566.
[20] Macdonald S J, Long A D. Joint estimates of quantitative trait locus effect and frequency using synthetic recombinant populations of Drosophila melanogaster. Genetics, 2007, 176(2):1261-1281.
pmid: 17435224
[21] Marriage T N, King E G, Long A D, et al. Fine-mapping nicotine resistance loci in Drosophila using a multiparent advanced generation inter-cross population. Genetics, 2014, 198(1):45-57.
doi: 10.1534/genetics.114.162107 pmid: 25236448
[22] 杨媚. 水稻MAGIC群体的分子基础及生态响应的特性. 广州:华南师范大学, 2012.
[23] Meng L J, Zhao X Q, Ponce K, et al. QTL mapping for agronomic traits using Multi-parent Advanced Generation Inter-Cross (MAGIC) populations derived from diverse elite Indica rice lines. Field Crops Research, 2016, 189:19-42.
doi: 10.1016/j.fcr.2016.02.004
[24] Broman K W. Genotype Probabilities at intermediate generations in the construction of recombinant inbred lines. Genetics, 2012, 190(2):403-412.
doi: 10.1534/genetics.111.132647 pmid: 22345609
[25] 胡刚. 利用水稻4亲本MAGIC群体进行粒形和株型的遗传分析. 武汉:华中农业大学, 2017.
[26] Kover P X, Valdar W, Trakalo J, et al. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genetics, 2009, 5(7):e1000551.
[27] Xiao Y J, Jiang S Q, Cheng Q, et al. The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 2021, 22(1):148.
doi: 10.1186/s13059-021-02370-7
[28] Meng L J, Wang B X, Zhao X Q, et al. Association mapping of ferrous,zinc,and aluminum tolerance at the seeding stage in Indica rice using MAGIC populations. Frontiers in Plant Science, 2017, 8:1822.
doi: 10.3389/fpls.2017.01822
[29] Meng L J, Guo L B, Ponce K, et al. Characterization of three Indica rice multiparent advanced generation inter-cross (magic) populations for quantitative trait loci (QTL) identification. The Plant Genome, 2016, 9(2):1-14.
[30] Ponce K, Zhang Y, Guo L B, et al. Genome-wide association study of grain size traits in Indica rice multiparent advanced generation intercross (MAGIC) population. Frontiers in Plant Science, 2020, 11:395.
doi: 10.3389/fpls.2020.00395
[31] Thépot S, Restoux G, Goldringer I, et al. Effciently tracking selection in a multiparental population:the case of earliness in wheat. Genetics, 2015, 199(2):609-621.
doi: 10.1534/genetics.114.169995
[32] Bandillo N, Raghavan C, Muyco P A, et al. Multi-parent advanced generation inter-cross (MAGIC) populations in rice:progress and potential for genetics research and breeding. Rice, 2013, 6(1):1-15.
doi: 10.1186/1939-8433-6-1
[33] 陈天晓, 朱亚军, 密雪飞, 等. 利用水稻MAGIC群体关联定位白叶枯病抗性QTL和创制抗病新种质. 作物学报, 2016, 42(10):1437-1447.
[34] Raghavan C, Mauleon R, Lacorte V, et al. Approaches in characterizing genetic structure and mapping in a rice multiparental population. G3:Genes, Genomes,Genetics, 2017, 7(6):1721-1730.
[35] Huang B E, Georde A W, Forrest K L, et al. A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnology, 2012, 10(7):826-839.
[36] Rebetzke G J, Verbyla A P, Verbyla K L, et al. Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant Biotechnology Journal, 2014, 12(2):219-230.
doi: 10.1111/pbi.12130 pmid: 24151921
[37] Mackay I J, Barber T, Bentley A R, et al. An eight parent multiparent advanced generation inter-cross population for winter-sown wheat:creation,properties,and validation. G3:Genes, Genomes,Genetics, 2014, 4(9):1603-1610.
[38] Malosetti M, Ribaut J M, Eeuwijk F A. The statistical analysis of multi-environment data:modelling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology, 2013, 4:44.
doi: 10.3389/fphys.2013.00044 pmid: 23487515
[39] 纪耀勇. 高筋全麦粉用途小麦的MAGIC群体法培育及品质检测. 镇江:江苏大学, 2019.
[40] Thépot S, Restoux G, Goldringer I, et al. Effciently tracking selection in a multiparental population:the case of earliness in wheat. Genetics, 2015, 199(2):609-621.
doi: 10.1534/genetics.114.169995
[41] Sannemann W, Huang B E, Mathew B, et al. Multi-parent advanced generation intercross in barley:high-resolution quantitative trait locus mapping for flowering time as a proof of concept. Molecular Breeding, 2015, 35(3):86.
doi: 10.1007/s11032-015-0284-7
[42] Cockram J, Scuderi A, Barber T, et al. Fine-mapping the wheat Snn1 locus conferring sensitivity to the Parastagonospora nodorum necrotrophic effector SnTox 1 using an eight founder multiparent advanced generation inter-cross population. G3:Genes, Genomes,Genetics, 2015, 5(11):2257-2266.
[43] Islam M S, Thyssen G N, Jenkins J N, et al. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics, 2016, 17(1):903.
doi: 10.1186/s12864-016-3249-2
[44] Huang C, Shen C, Wen T W, et al. Genome-wide association mapping for agronomic traits in an 8-way Upland cotton MAGIC population by SLAF-seq. Theoretical and Applied Genetics, 2021, 134(8):999-1017.
[45] Abdelraheem A, Thyssen G N, Fang D D, et al. GWAS reveals consistent QTL for drought and salt tolerance in a MAGIC population of 550 lines derived from intermating of 11 Upland cotton (Gossypium hirsutum) parents. Molecular Genetics and Genomics, 2020, 296(10):119-129.
doi: 10.1007/s00438-020-01733-2
[46] Ongom P O, Ejeta G. Mating design and genetic structure of a multi-parent advanced generation intercross (MAGIC) population of Sorghum (Sorghum bicolor (L.) Moench). G3:Genes, Genomes, Genetics, 2018, 8(1):331-341.
[47] 刘洪泰. 基于MAGIC群体的烟草黑胫病抗性遗传分析. 北京: 中国农业科学院, 2020.
[48] Dell'Acqua M, Gatti D M, Pea G, et al. Genetic properties of the MAGIC maize population:a new platform for high definition QTL mapping in Zea mays. Genome Biology, 2015, 16(1):167.
doi: 10.1186/s13059-015-0716-z
[49] Anderson II S L, Mahan A L, Murray S C, et al. Four parent maize (FPM) population:effects of mating designs on linkage disequillibrium and mapping quantitative traits. Plant Genome. 2018, 11(2):1-17.
[50] Septiani P, Lanubile A, Stagnati L, et al. Unravelling the genetic basis of Fusariom seedling rot resistance in the MAGIC maize population:novel targets for breeding. Scientific Reports, 2019, 9(1):5665.
doi: 10.1038/s41598-019-42248-0 pmid: 30952942
[51] Butrón A, Santiago R, Cao A, et al. QTLs for resistance to fusarium ear rot in a multiparent advanced generation intercross (MAGIC) maize population. Plant Disease, 2019, 103(5):897-904.
doi: 10.1094/PDIS-09-18-1669-RE pmid: 30856072
[52] Yi Q, Malvar R A, Álvarez-Iglesias L, et al. Dissecting the genetics of cold tolerance in a multiparental maize population. Theoretical and Applied Genetics, 2020, 133(2):503-516.
doi: 10.1007/s00122-019-03482-2 pmid: 31740990
[53] Li H, Peng Z, Yang X, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45(1):43-50.
doi: 10.1038/ng.2484
[54] Yang N, Lu Y L, Yang X H, et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics, 2014, 10(9):e1004573.
[55] Giraud H, Bauland C, Falque M, et al. Linkage analysis and association mapping qtl detection models for hybrids between multiparental populations from two heterotic groups:application to biomass production in maize(Zea mays L.). G3:Genes, Genomes,Genetics, 2017, 7(11):3649-3657.
[56] 赵福永, 赵恒, 王晓玲, 等. 甘蓝型油菜MAGIC群体构建及其在遗传育种中的应用潜力. 中国油料作物学报, 2017, 39(2):145-151.
[57] Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops. Trends in Plant Science, 2007, 12(2):57-63.
doi: 10.1016/j.tplants.2006.12.001 pmid: 17224302
[58] 郭志军, 赵云雷, 陈伟, 等. 陆地棉SSR标记遗传多样性及其与农艺性状的关联分析. 棉花学报, 2014, 26(5):420-430.
[59] 石治鹏. 棉花MAGIC群体后代株系对缩节胺的敏感性研究. 荆州:长江大学, 2018.
[60] 黄聪. 基于自然群体及MAGIC群体关联分析解析陆地棉重要农艺性状的遗传基础. 武汉:华中农业大学, 2018.
[61] Liang Y M, Liu H J, Yan J B, et al. Natural variation in crops:realized understanding,continuing promise. Annual Review of Plant Biology, 2021, 72:357-385.
doi: 10.1146/annurev-arplant-080720-090632
[62] Yu J, Wang J, Lin W, et al. The genomes of Oryza sativa:a history of duplications. PLoS Biology, 2005, 3(2):266-281.
[63] Giraud H, Lehermeier C, Bauer E, et al. Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups for maize. Genetics, 2014, 198(4):1717-1734.
doi: 10.1534/genetics.114.169367
[64] Consortium C C. The genome architecture of the colaborative cross mouse genetic reference population. Genetics, 2012, 190(2):389-402.
doi: 10.1534/genetics.111.132639
[65] Verbyla A P, George A W, Cavanagh C R, et al. Whole-genome QTL analysis for MAGIC. Theoretical and Applied Genetics, 2014, 127(8):1753-1770.
doi: 10.1007/s00122-014-2337-4 pmid: 24927820
[66] Zhao Y L, Wang H M, Chen W, et al. Genetic diversity and population structure of elite cotton(Gossypium hirsutum L.) germplasm revealed by SSR markers. Plant Systematics and Evolution, 2015, 301(1):327-336.
doi: 10.1007/s00606-014-1075-z
[67] Scutari M, Howell P, Balding D J, et al. Multiple quantitative trait analysis using bayesian networks. Genetics, 2014, 198(1):129-137.
doi: 10.1534/genetics.114.165704 pmid: 25236454
[68] Corbett-Detig R B, Zhou J, Clark A G, et al. Genetic incompatibilities are widespresd within species. Nature, 2013, 504(7478):135-137.
doi: 10.1038/nature12678
[69] Huang B E, Verbyla K L, Verbyla A P, et al. MAGIC populations in crops:current status and future prospects. Theoretical and Applied Genetics, 2015, 128(6):999-1017.
doi: 10.1007/s00122-015-2506-0 pmid: 25855139
[70] Hemani G, Theocharidis A, Wei W H, et al. EpiGPU:exhaustive pairwise epistasis scans parallelized on consumer level graphics cards. Bioinformatics, 2011, 27(11):1462-1465.
doi: 10.1093/bioinformatics/btr172
[71] Gyenesei A, Semple CM, Haley C S, et al. High throughput analysis of epistasis in genome-wide association studies with BiForce. Bioinformatics, 2013, 29(20):1957-1964.
[1] Wu Jianzhong,Li Suiyan,Lin Hong,Ma Yanhua,Pan Liyan,Li Donglin,Sun Dequan. Genetic Variation and Principal Component Analysis of Silage Maize Quality Traits [J]. Crops, 2019, 35(3): 42-48.
[2] Huan Wang,Bing Liu,Ziyu Bai,Junli Shi,Jinlin Ye. Effects of Laser Irradiation and Hybridization on the DNA Methylation Alteration in Sorghum (Sorghum bicolor L.) [J]. Crops, 2017, 33(1): 32-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!