Crops ›› 2017, Vol. 33 ›› Issue (1): 32-37.doi: 10.16035/j.issn.1001-7283.2017.01.006

Previous Articles     Next Articles

Effects of Laser Irradiation and Hybridization on the DNA Methylation Alteration in Sorghum (Sorghum bicolor L.)

Wang Huan,Liu Bing,Bai Ziyu,Shi Junli,Ye Jinlin   

  1. Department of Agronomy,Jilin Agricultural University,Changchun 130118,Jilin,China
  • Received:2016-08-18 Revised:2016-12-08 Online:2017-02-15 Published:2018-08-26

Abstract:

In this study, sorghum (Sorghum bicolor L.) inter-strain hybrids was used as the test organism, and their germinating seeds were treated by the He-Ne laser irradiation, then the level and pattern of the different genotype DNA methylation in the plants were analyzed by methylation-sensitive amplified polymorphism (MSAP) to reveal genome-wide DNA methylation alterations in the recipient sorghum genome. We aimed to probe the possible interactive effect of low-dose laser irradiation and hybridization. Results showed that low-dose laser irradiation induced the whole level and pattern of DNA methylation in plant intraspecific F1 hybrids relative to their pure-line parents. The results can demonstrate that low-dose laser irradiation is epigenetically mutagenic in plants. The first finding suggests that variation of the whole DNA methylation in different genotypes sorghum is accompanied by hypomethylation. The second finding indicates the CG sites variation more than the CNG sites variation in the DNA methylation variation mode. Comparing the effects of laser irradiation on the different genotypes, the DNA methylation level of the F1 hybrids lower than the inter mediate value of the corresponding pure line parents. Therefore, we propose that the combined use of intraspecific hybridization and an epigenetically mutagenic treatment like low-dose laser irradiation could be a useful means to generate heritable epigenetic variations in plants, should be further investigated.

Key words: Sorghum bicolor L., Iaser irradiation, Cytosine DNA methylation, Epigenetic variations, MSAP

Table 1

Sequence of adaptors, pre-amplification primers and selective amplification primers combinations in sorghum MSAP analysis"

命名Name 5'-3'序列5'-3' sequence
接头序列Sequence of adaptors EcoRⅠ-adapter1 5'-CTCGTAGACTGCGTACC-3'
EcoRⅠ-adapter2 5'-AATTGGTACGCAGTC-3'
H/M-adapter1 5'-GATCATGAGTCCTGCT-3'
H/M-adapter2 5'-CGAGCAGGACTCATGA-3'
预扩增引物Pre-amplification primers E-A 5'-GACTGCGTACCAATTCA-3'
H/M-0 5'-ATCATGAGTCCTGCTCGG-3'
选择性扩增引物Selective amplification primers 1H/M-TCT 5'-ATCATGAGTCCTGCTCGGTCT-3'
2H/M-TCG 5'-ATCATGAGTCCTGCTCGGTCG-3'
3H/M-TTC 5'-ATCATGAGTCCTGCTCGGTTC-3'
4H/M-TTG 5'-ATCATGAGTCCTGCTCGGTTG-3'
5H/M-TTA 5'-ATCATGAGTCCTGCTCGGTTA-3'
6H/M-TGT 5'-ATCATGAGTCCTGCTCGGTGT-3'
7H/M-TGA 5'-ATCATGAGTCCTGCTCGGTGA-3'
8H/M-TAC 5'-ATCATGAGTCCTGCTCGGTAC-3'
E-AAC a 5'-GACTGCGTACCAATTCAAC-3'(1,2,3和8引物组合)
E-AAG b 5'-GACTGCGTACCAATTCAAG-3'(3和4引物组合)
E-ACA c 5'-GACTGCGTACCAATTCACA-3'(3和4引物组合)
E-ACG f 5'-GACTGCGTACCAATTCACG-3'(4和5引物组合)
E-AGC g 5'-GACTGCGTACCAATTCAGC-3'(1,3,6和7引物组合)
E-AGG h 5'-GACTGCGTACCAATTCAGG-3'(1,3,4,5和7引物组合)
E-ATC j 5'-GACTGCGTACCAATTCATC-3'(7引物组合)

Fig.1

He-Ne iaser inducing the sorghum methylation level(The parental pure-lines M and N,F1 hybrids MN, the number (in A) of single beads for different genotypes.B as means±SE of replicates,* significant difference)"

Fig.2

Results of MSAP profiles showing the various types of locus-specific DNA methylation inheritance and variation (marked by arrows) in sorghum under the He-Ne laser(EcoRⅠ+HpaⅡ→E+H,EcoRⅠ+MspⅠ→E+M)"

Fig.3

He-Ne laser irradiation on the variation in the major methylation patterns"

Table 2

Putative function,identity and restriction map of the sequenced MSAP profiles showing difference in methylation pattern in different genotype"

MSAP片段
MSAP profiles
去甲基化变异位点
Hypomethyl
ated site
基因型和单株个体Genotype and the
different individual
染色体Chromosome
位置Location
同源性Idendity
预测功能
Predicted function
长度(bp)和限制性酶切位点
Size (bp) and restriction map
Z-2 CG or CNG MN-4 Chr.8; 6.1e-32
Sb08g000720.1
Position:634595..636034
漆酶-23前体
Laccase-23 precursor
EcoRI H/M
↓ 291 ↓
N-4 CG N-5 Chr.4; 6.8e-130
Sb04g004650.1
Position:4450817..4452596
未知蛋白
Putative uncharacterized protein
EcoRI M
↓ 243 ↓
F-13 CG NM-1 Chr.2; 5.7e-80
Sb02g005470.1
Position:6482952..6489780
未知蛋白
Putative uncharacterized protein
EcoRI H
↓ 159 ↓
Z-14 CNG MN-2 Chr.3; 1.7e-23
Osa5(12001:8156651-16748019) 165 loci
高粱–水稻同源片段
Sorghum-Rice syntenic segments
EcoRI H
↓ 360 ↓
[1] Morris J R . Genes,genetics,and epigenetics:a correspondence. Science, 2001,293(1):1103-1105.
doi: 10.1126/science.293.5532.1103
[2] Ou X F, Long L K, Wu Y , et al. Spaceflight-induced genetic and epigenetic changes in the rice (Oryza sativa L.) genome are independent of each other. Genome, 2010,53(7):524-532.
doi: 10.1139/G10-030
[3] Tariq M, Paszkowski J . DNA and histone methylation in plants. Trends in Genetics, 2005,20(1):244-251.
[4] Riddle N C, Richards E J . The control of natural variation in cytosine methylation in arabidopsis. Genetics, 2002,162(1):355-363.
[5] 陈兆贵, 曾灰鸿, 林若徐 . 马铃薯不同株系之间的DNA甲基化变异研究.作物杂志, 2014(1):63-67.
[6] Wada Y, Miyamoto K, Kusano T . Association between up-regulation of stress-responsive genes and hypomethylation of genomie DNA in tobacco plants. Genomics, 2004,271(1):658-666.
[7] 徐妍, 张海玲, 徐香玲 , 等. 逆境胁迫下植物甲基化变异的研究进展. 中国生物工程杂志, 2014,34(10):87-93.
doi: 10.13523/j.cb.20141014
[8] Chinnusamy V, Zhu J K . Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 2009,12(2):133-139.
doi: 10.1016/j.pbi.2008.12.006
[9] 陈芳, 王子成, 何艳霞 , 等. 超低温保存小麦种子和幼苗的遗传变异分析. 核农学报, 2009,23(4):548-554.
[10] 何玲莉, 沈虹, 王燕 , 等. 铅胁迫下萝卜基因组DNA甲基化分析. 核农学报, 2015,9(7):1278-1284.
[11] 徐小万, 雷建军, 张长远 , 等. 高温多湿胁迫下辣椒DNA甲基化分析. 核农学报, 2014,28(7):1175-1180.
doi: 10.11869/j.issn.100-8551.2014.07.1175
[12] 李娜, 张旸, 解莉楠 , 等. 植物DNA甲基化研究进展. 植物生理学报, 2012,48(11):1027-1036.
[13] 杨震, 郭会君, 赵林姝 , 等. 60Co-射线诱导的小麦基因组DNA的甲基化变异 . 核农学报, 2015,29(1):1-9.
doi: 10.11869/j.issn.100-8551.2015.01.0001
[14] 张从宇, 王敏, 张子学 , 等. 60Coγ射线、激光及两者复合处理小麦的生物学效应 . 核农学报, 2008,22(3):253-255.
[15] 杨巍 . 玉米自交系DNA甲基化多态性与杂种优势关系及EMS处理诱导DNA甲基化变异的研究. 长春:东北师范大学, 2011.
[16] 文定青, 姚全胜, 王松标 , 等. 植物杂种优势分子机理研究进展. 安徽农业科学, 2015,43(12):28-31.
[17] Zhang M S, Xu C M, Wettstein D V , et al. Tissue-specific differences in cytosine methylation and their association with differential gene expression in sorghum. Plant Physiology, 2011,156(4):1955-1966.
doi: 10.1104/pp.111.176842
[18] Zhang M S, Xu C M, Yan H . Limited tissue culture-induced mutations and linked epigenetic modifications in F1 hybrids of sorghum pure lines are accompanied by increased transcription of DNA methyltransferases and 5-methylcytosine glycosylases. Plant Journal, 2009,57(4):666-679.
doi: 10.1111/tpj.2009.57.issue-4
[19] 王海风, 新楠, 吴仙花 , 等. 甜高粱育种的现状、问题与对策.作物杂志, 2013(2):23-26.
[20] Liu L, Guo W, Zhu X , et al. Inheritance and fine mapping of fertility-restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theoretical and Applied Genetics, 2003,106(3):461-469.
doi: 10.1007/s00122-002-1084-0
[21] Salmon A, Ainouche M L, Wendel J F . Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Molecular Ecology, 2005,14(2):1163-1175.
doi: 10.1111/j.1365-294X.2005.02488.x
[22] Boyko A, Kovalchuk I . Epigenetic control of plant stress response. Environmental and Molecular Mutagenesis, 2007,49(1):61-72.
[23] Chen Y, Yue M, Wang X . Influence of He-Ne laser irradiation on seeds thermodynamic parameters and seedlings growth of isatis indogotica. Plant Science, 2005,168(1):601-606.
doi: 10.1016/j.plantsci.2004.09.005
[24] Choi C S, Sano H . Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodieste-rase-like protein in tobacco plants. Molecular Genetics and Genomics, 2007,277(1):589-600.
doi: 10.1007/s00438-007-0209-1
[25] Ou X F, Long L K, Zhang Y H . Spaceflight induces both transit and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.). Mutation Research, 2009,662(1):44-53.
doi: 10.1016/j.mrfmmm.2008.12.004
[26] Birchler J A, Auger D L, Riddle N C . In search of the molecular basis of heterosis. Plant Cell, 2003,15(1):2236-2239.
doi: 10.1105/tpc.151030
[27] Springer N M, Stupar R M . Allelic variation and heterosis in maize:how do two halves make more than a whole? Genome Research, 2007,17(1):264-275.
doi: 10.1101/gr.5347007
[28] He G, He H, Deng X W . Epigenetic variations in plant hybrids and their potential roles in heterosis. Journal Genet Genomics, 2013,40(5):205-210.
doi: 10.1016/j.jgg.2013.03.011
[29] Guo M, Rupe M A, Zinselmeier C . Allelic variation of gene expression in maize hybrids. Plant Cell, 2004,16(1):1707-1716.
doi: 10.1105/tpc.022087
[1] Yanfang Hao,Liangqun Wang,Yong Liu,Wei Zhang,Wei Yang,Hongyan Bai,Bo Wu. Establishment of Sorghum Cell Suspensions with Young Leaves [J]. Crops, 2018, 34(1): 35-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .