Crops ›› 2022, Vol. 38 ›› Issue (5): 22-26.doi: 10.16035/j.issn.1001-7283.2022.05.003

Previous Articles     Next Articles

Convergence Improvement of Aroma Genes and Rice Blast Resistance Genes in Kongyu 131

Li Ruiqi1(), Bi Haoran2(), Jiang Gonghao2(), Duan Haiyan1()   

  1. 1College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, Heilongjiang, China
    2College of Life Sciences, Heilongjiang University, Harbin 150080, Heilongjiang, China
  • Received:2021-06-20 Revised:2021-11-09 Online:2022-10-15 Published:2022-10-19

Abstract:

Despite having Pik and Pia rice blast resistance genes, Kongyu 131 nonetheless lost its blast resistance in production under the current rice farming practises in Heilongjiang province. There is also an urgent need for focused improvement because the existing elite variety lacks scent, one of its advantageous traits. Genetic enhancement is therefore necessary to strengthen blast resistance and introduce the fragrance gene. In order to obtain the outcomes of genetic improvement of aroma characteristics and rice blast resistance in Kongyu 131, we now reported the introduction of fragrance gene Osbadh2 (fgr) and blast resistance genes, Pi1, Pi2, and Pi9, into Kongyu 131. We have obtained three kinds of two-gene combinations (Pi1+fgr, Pi2+fgr and Pi9+fgr) showing strong resistance to rice blast, together with rice aroma quality providing foundation for Kongyu 131 further improvement.

Key words: Kongyu 131, Fragrance gene, Blast resistant gene, Pyramiding breeding

Table 1

Identification pyramided genes of F2 generation of double genes polymerization plants"

聚合基因
Pyramided
gene
引物
Primer
样品数量
Number
of samples
单基因纯合单株数
Number of monogenic
homozygosity plants
双基因纯合单株数
Number of double gene
homozygosity plants
Pi1+fgr BadF4-R4/RM27322 200 31(Pi1) 6
Pi2+fgr BadF4-R4/L11 200 27(fgr) 7
Pi9+fgr BadF4-R4/L7 200 27(Pi9) 8

Fig.1

The PCR identificationto of F2 generation of double-gene polymerization individuals (a) amplification results of Pi1 and fgr in KY(Pi1+fgr); (b) amplification results of Pi2 and fgr in KY(Pi2+fgr); (c) amplification results of Pi9 and fgr in KY(Pi9+fgr). D is Inari"

Table 2

Aroma quality appraisal of F3 generation of double genes polymerization plants"

基因组合
Gene
combination
改良系空育131所占的比例
Proportion of improved
Kongyu 131 (%)
香味程度
Degree
of scent
Pi1+fgr 0 无香
20 微弱的香味
40 较香
60
80 浓香
100 浓香
Pi2+fgr 0 无香
20 微弱的香味
40 较香
60
80 浓香
100 浓香
Pi9+fgr 0 无香
20 微弱的香味
40 较香
60
80 浓香
100 浓香

Table 3

Rice blast resistance identification of F3 generation of double genes polymerization plants"

抗性等级
Resistance grade
基因组合Gene combination
Pi1+fgr Pi2+fgr Pi9+fgr CK(KY131)
稻瘟病Rice blast 3 3 4 6

Fig.2

Analysis results of gene chip in double gene polymerization individuals Red area, blue area and transparent area are purely differential loci, heterozygous differential loci, and loci with the same genetic background in KY(Pi1+fgr), KY(Pi2+fgr), KY(Pi9+fgr) and KY131, respectively"

Table 4

Investigation of agronomic traits of F3 generation in double-gene polymerization plants"

基因组合
Gene combination
分蘖数
Number
of tillers
穗长
Ear length
(cm)
单穗粒数
Number of grains
per panicle
单株粒重
Grain weight
per plant (g)
千粒重
1000-grain
weight (g)
结实率
Seed-setting
rate (%)
KY131(CK) 28.50±6.26 14.78±1.12 87.30±10.42 45.07±8.36 25.55±1.56 90.90±1.31
KY(Pi1+fgr 31.70±3.37 14.97±0.41 91.40±9.40 45.71±6.66 24.65±0.71 90.12±1.52
KY(Pi1+fgr 30.10±3.63 14.98±0.39 93.10±10.37 42.04±6.11 24.60±0.84 90.29±1.49
KY(Pi2+fgr 28.80±2.97 15.17±0.41 90.20±10.12 42.78±4.74 24.72±1.00 90.62±2.22
KY(Pi2+fgr 28.70±2.91 15.11±0.47 88.80±10.41 42.31±4.76 25.03±0.97 91.04±2.42
KY(Pi9+fgr 31.10±4.70 15.19±0.62 90.10±11.69 46.52±8.65 24.41±0.90 90.65±2.35
KY(Pi9+fgr 31.70±5.50 14.99±0.60 91.00±11.76 43.88±7.94 24.06±0.90 90.94±2.36

Fig.3

Agronomic traits of F3 generation of double genes polymerization plants"

[1] 谢华安. 杂交水稻抗病虫育种实践与思考. 中国稻米, 2020, 26(1):1-5.
doi: 10.3969/j.issn.1006-8082.2020.01.001
[2] 刘培靖, 张波. 水稻品种空育131的引入与应用. 中国农村小康科技, 2005(3):24-25.
[3] 董继新, 董海涛, 李德葆. 水稻抗稻瘟性研究进展. 农业生物技术学报, 2000, 8(1):99-102.
[4] 郑祥正. 水稻品种空育131稻瘟病抗性基因座Pik鉴定及抗性分析. 福建农业科技, 2019(9):12-15.
[5] Hua L X, Wu J Z, Chen C X, et al. The isolation of Pi1,an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theoretical and Applied Genetics, 2012, 125(5):1047-1055.
doi: 10.1007/s00122-012-1894-7
[6] 李冰, 李永聪, 刘芝妤, 等. 水稻抗稻瘟病基因Pi2特异分子标记的开发与应用. 分子植物育种, 2021, 19(8):2638-2643.
[7] 李俊周, 田志强, 刘李鑫哲, 等. 黄淮稻区推广水稻品种稻瘟病抗性基因Pi9Pi-ta的分子鉴定. 种子, 2018, 37(9):1-4.
[8] Liu G, Lu G, Zeng L, et al. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t),are physically linked on rice chromosome 6. Molecular Genetics and Genomics, 2002, 267(4):472-480.
pmid: 12111554
[9] 孙平勇, 张武汉, 舒服, 等. 香稻品种OsBADH2突变位点分析及其功能标记的开发. 生物技术通报, 2021, 37(4):1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1086
[10] Peng B, Sun Y F, Chen B Y, et al. Research progress of fragrance gene and its application in rice breeding. Bulletin of Botany, 2017, 52(6):120-130.
[11] 吕军, 蒋洪波, 姜秀英, 等. 利用分子标记辅助选择聚合水稻Pi-tafgr基因. 分子植物育种, 2022, 20(5):1581-1587.
[12] Prodhan Z H, Qingyao S. Rice aroma:a natural gift comes with price and the way forward. Rice Science, 2020, 27(2):86-100.
doi: 10.1016/j.rsci.2020.01.001
[13] 喻辉辉, 张启发, 周发松. 水稻基因组育种. 生命科学, 2016, 28(1):1258-1267.
[14] Chaudhary R C. Standard evaluation system for rice (4th edition). Manila:International Rice Research Institute, 1996.
[15] 陈红萍, 刘开浪, 杨宙, 等. 利用分子标记辅助选择改良水稻稻瘟病抗性. 湖北农业科学, 2019, 58(2):29-32.
[16] 宁敏, 刘俊雄, 暴亚冲, 等. 水稻种质资源香味基因Badh2的分子鉴定及香稻筛选. 分子植物育种, 2021, 19(15):5017-5029.
[17] Xing X, Liu X L, Chen H L, et al. Improving blast resistance of rice restorer R288 by molecular marker-assisted selection of Pi9 gene. Crop Research, 2016, 30(5):487-491.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[4] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[5] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .
[6] Wenlian Bai,Yi Zheng,Jingxiu Xiao. Below-Ground Biotic Mechanisms of Phosphorus Uptake and Utilization Improved by Cereal and Legume Intercropping-A Review[J]. Crops, 2018, 34(4): 20 -27 .
[7] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China[J]. Crops, 2018, 34(4): 42 -47 .
[8] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress[J]. Crops, 2018, 34(4): 48 -52 .
[9] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane[J]. Crops, 2018, 34(4): 53 -61 .
[10] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang[J]. Crops, 2018, 34(4): 62 -68 .