Crops ›› 2023, Vol. 39 ›› Issue (1): 103-108.doi: 10.16035/j.issn.1001-7283.2023.01.015

Previous Articles     Next Articles

Effects of Seedling Raising Methods on Seedling Quality, Yield and Quality of Rice in Cold Region

Xia Yuying1(), Wang Zhijun1, Li Hongyu1(), Hu Chuanjun2, Lü Yandong1, Zhao Haicheng1, Zheng Guiping1   

  1. 1College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Beidahuang Kenfeng Seed Co., Ltd., Mudanjiang Branch, Mishan 158300, Heilongjiang, China
  • Received:2021-07-04 Revised:2021-11-09 Online:2023-02-15 Published:2023-02-22

Abstract:

Due to the increasing demand of seedling soil, the selection of substrate plate for seedling cultivation plays an important role in the sustainable development of agriculture. A two-factor random block group was used in the experiment. The test variety was Longjing 31, and the factor A was in four planting areas (Chahayang Farm, Fuyu Pasture, Qiqihar Pedigree Station and Tailai county in Heilongjiang province). The factor B was seedling raising method (substrate plate seedling raising and conventional seedling raising), the effects of substrate plate seedling raising and conventional seedling raising on rice seedling quality were discussed. The results showed that in comparison of rice seedling quality, the interaction between the test site and the seedling method had significant or extremely significant effects on eight seedling quality indexes, including plant height, first leaf length, second leaf length, third leaf length and so on. Except the 2-3 interoccipital interval was no significant difference, first leaf length, second leaf length and third leaf length were significant or extremely significant higher than those of the conventional seedlings, and the length of the first leaf, the third leaf and the root length were the most significant, increased by 28.01%, 29.20% and 33.10%, respectively. In comparison of rice yield and its components, the seed-setting rate of substrate was significantly higher than that of conventional substrate, increasing by 1.36%. In the comparison of rice quality indexes, there was no significant difference between substrate plate and conventional rice quality indexes.

Key words: Rice, Conventional seedling raising, Substrate plate seedling raising, Yield, Quality

Table 1

Basic physical and chemical properties of soil"

试验地点
Test site
碱解氮
Alkaline hydrolysis
nitrogen (mg/kg)
有效磷
Available
phosphorus (mg/kg)
速效钾
Available K
(mg/kg)
有机质
Organic
matter (g/kg)
pH
查哈阳农场Chahayang farm 252.0 34.9 156.8 40.6 6.73
富裕牧场Fuyu pasture 131.3 26.6 197.5 36.2 8.07
齐齐哈尔种畜场Qiqihar pedigree station 175.1 11.7 318.2 39.0 8.09
泰来县Tailai county 204.5 33.5 187.4 33.5 6.52

Table 2

Physical and chemical properties of substrate"

指标Indicator 容重Bulk density (g/cm3) 总孔隙度Total porosity (%) 电导率Electrical conductivity (μS/cm) pH
基质板Matrix plate 0.38 71.28 1.40 5.80

Table 3

Comparison of seedling quality in different breeding methods"

处理
Treatment
株高
Plant
height
(cm)
第1叶长
The first
leaf length
(cm)
第2叶长
The second
leaf length
(cm)
第3叶长
The third
leaf length
(cm)
第1叶鞘长
The first leaf
sheath length
(cm)
1~2叶枕间距
1~2
interoccipital
interval (cm)
2~3叶枕间距
2~3
interoccipital
interval (cm)
根长
Root
length
(cm)
根数
Root
number
百株地上干重
Above ground dry weight of 100
plants (g)
百株地下干重
Underground dry
weight of 100
plants (g)
A1 13.98aA 1.66aA 4.46aA 8.50aA 2.82aA 1.20aA 1.57aA 6.38aA 9.57aA 2.83aA 1.09aA
A2 13.67bB 1.56bB 4.44aA 8.24bB 2.76aA 1.13bB 1.53aA 6.33aAB 9.51aA 2.77aAB 1.07aA
A3 13.13cC 1.56bB 4.33abA 7.83cC 2.74aA 1.12bB 1.46bB 6.03bBC 9.22abAB 2.64bBC 1.00bB
A4 12.42dD 1.56bB 4.29bA 7.15dD 2.73aA 1.08bB 1.38cC 5.73cC 8.87bB 2.53cC 0.93cC
B1 14.28aA 1.78aA 4.89aA 8.49aA 3.06aA 1.24aA 1.49aA 6.98aA 9.76aA 2.76aA 1.09aA
B2 12.33bB 1.39bB 3.87bB 7.36bB 2.46bB 1.02bB 1.48aA 5.25bB 8.82bB 2.62bB 0.95bB
FA 119.16** 13.16** 3.06 112.31** 1.13 9.42** 27.20** 14.55** 7.46** 15.25** 48.20**
FB 960.58** 745.56** 502.84** 408.55** 277.45** 202.20** 0.03 491.83** 64.46** 18.27** 151.13**
FFB 37.30** 51.01** 5.33* 12.29** 10.32** 19.61** 4.23* 7.71** 0.67 1.76 1.55

Fig.1

The interaction between the main seedling quality index test sites and seedling raising methods Different capital letters and lowercase letters indicate extremely significant difference (P < 0.01) and significant difference (P < 0.05), respectively"

Table 4

Comparison of rice yield and its components in different seedling raising methods"

处理
Treatment
穗数(穗/m2
Number of panicles (panicle/m2)
穗粒数
Grain number per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量
Yield (kg/hm2)
A1 578.22aA 82.83aA 86.81bB 26.43bB 10 964.88aA
A2 478.10bB 79.85aAB 91.50aA 25.86cB 9034.07bB
A3 553.92aA 71.09bB 86.66bB 26.17bcB 8931.50bB
A4 424.60cB 76.42abAB 90.74aA 27.47aA 8092.27bB
B1 522.63aA 77.58aA 89.53aA 26.38aA 9530.46aA
B2 494.79aA 77.51aA 88.33bA 26.59aA 8980.90aA
FA 23.30** 4.40* 21.55** 18.41** 12.23**
FB 3.64 0.00 4.75* 1.69 2.50
FFB 0.31 1.05 2.69 1.26 0.19

Table 5

Comparison of rice quality in different seedling raising methods"

处理
Treatment
糙米率
Brown rice
rate (%)
精米率
Polished rice
rate (%)
整精米率
Head rice
rate (%)
垩白粒率
Chalky grain
rate (%)
垩白度
Chalkiness
(%)
蛋白质含量
Protein
content (%)
直链淀粉含量
Amylose
content (%)
食味评分
Taste score
A1 82.17aA 74.40aA 71.44aA 6.38aA 3.52aA 8.83aA 16.73aA 76.77aA
A2 81.95aA 73.80aA 70.26aAB 6.35aA 3.43aA 8.80aA 16.72aA 75.63aAB
A3 79.54abA 70.65bAB 69.01abAB 5.38aAB 2.90aAB 8.62aA 16.67abA 74.57abAB
A4 78.55bA 69.43bB 67.30bB 2.59bB 1.40bB 8.60aA 15.92bA 72.65bB
B1 80.80aA 72.41aA 70.03aA 5.33aA 2.90aA 8.77aA 16.55aA 75.73aA
B2 80.30aA 71.73aA 68.97aA 5.02aA 2.72aA 8.66aA 16.47aA 74.08aA
FA 3.85* 6.13* 3.75* 5.96* 5.20* 0.67 2.53 3.74*
FB 0.30 0.50 1.36 0.19 0.18 0.54 0.11 3.31
FFB 0.01 0.01 0.06 0.57 0.35 0.79 1.25 0.28
[1] 李玲. 水资源非农化对粮食生产的影响及应对策略研究. 泰安:山东农业大学, 2020.
[2] 高继平, 隋阳辉, 霍轶琼, 等. 生物炭用作水稻育苗基质的研究进展. 作物杂志, 2014(2):16-21.
[3] 周劲松, 闫平, 张伟明, 等. 生物炭对东北冷凉区水稻秧苗根系形态建成与解剖结构的影响. 作物学报, 2017, 43(1):72-81.
[4] 杨振东, 李金哲. 水稻育秧基质板的应用. 农业工程, 2015, 5(增1):60-63.
[5] 燕军城, 杨卫斌, 王龙. 水稻应用营养基质板育秧试验总结. 北方水稻, 2019, 49(1):36-37,40.
[6] 林育炯, 张均华, 胡继杰, 等. 不同类型基质对机插水稻秧苗生理特征及产量的影响. 农业工程学报, 2016, 32(8):18-26.
[7] 张林利. 功能型高效生物水稻育苗基质研制及其应用效果研究. 郑州:河南农业大学, 2018.
[8] 李娜. 秸秆与煤矸石混配基质的育苗性能研究. 沈阳:沈阳建筑大学, 2020.
[9] 朱宁. 不同育秧基质对水稻秧苗素质及栽后生长的影响. 南昌:江西农业大学, 2018.
[10] 林育炯. 不同育秧基质对机插水稻生长发育与产量的影响及调控研究. 北京: 中国农业科学院, 2016.
[11] 陈虞雯. 抗盐基质对水稻秧苗素质及产量的影响. 南京:南京农业大学, 2016.
[12] 章海坡. 机插水稻基质育苗生长调节剂及秧龄对秧苗素质和产量形成的影响. 扬州:扬州大学, 2019.
[13] 赵婷婷. 基质组合对垦粳5号秧苗素质及产量品质影响的研究. 大庆:黑龙江八一农垦大学, 2017.
[14] 杨振东, 刘生才, 张俊升, 等. 水稻育秧基质板无土育秧的优点及应用技术要点. 现代化农业, 2019(1):41-42.
[15] 钟平, 邵文奇, 孙春梅, 等. 托盘育苗方法中不同育苗介质及出苗方式对机插水稻秧苗素质的影响. 西南农业学报, 2019, 32(8):1740-1745.
[16] 李玉祥, 刘扬, 闫飞宇, 等. 水卷苗育秧方法对水稻秧苗素质的影响. 石河子大学学报(自然科学版), 2019, 37(4):419-426.
[17] 孙如银, 吴文革, 陈刚, 等. 不同育秧方式对机插中籼水稻秧苗素质和产量性状的影响. 安徽农业科学, 2014, 42(4):1024-1026.
[18] 刘华, 刘科美, 袁文斌, 等. 水稻不同育秧方式对生育期及产量的影响. 中国农技推广, 2005(1):25-26.
[19] 李志翔, 汤计超, 吴朝晖, 等. 不同育秧方式对水稻秧苗素质及产量的影响. 湖北农业科学, 2020, 59(23):41-45,62.
[20] 凌宇飞, 许方甫, 卫平洋, 等. 水稻秸秆基质块无盘育秧对秧苗素质与栽插质量的影响. 江西农业大学学报, 2021, 43(1):9-17.
[21] 李睿, 董立强, 商文奇, 等. 育秧基质和喷水间隔处理对机插秧苗素质及产量的影响. 中国水稻科学, 2021, 35(1):59-68.
doi: 10.16819/j.1001-7216.2021.0714
[22] 吴娜. 水稻应用基质板育秧试验总结. 现代化农业, 2017(3):41-42.
[23] 聂春阳, 柴楠, 杜春影, 等. 不同育苗方式对寒地水稻秧苗素质及产量的影响. 黑龙江八一农垦大学学报, 2012, 24(3):5-7.
[24] 赵婷婷, 姜玉伟, 郑桂萍, 等. 不同基质组合对水稻秧苗素质及理论产量品质的影响. 四川农业大学学报, 2017, 35(2):151-158.
[25] 谭可菲, 刘传增, 马波, 等. 不同育苗方式对水稻秧苗素质及产量的影响. 黑龙江农业科学, 2014(5):38-41.
[26] 张均华, 黄晶, 徐青山, 等. 水稻无土育秧基质研究进展. 中国稻米, 2020, 26(5):40-44.
doi: 10.3969/j.issn.1006-8082.2020.05.009
[1] Gao Wei, Hao Qingting, Zhang Zeyan, Wang Qian, Yan Hubin, Zhu Huijun, Zhao Xueying, Zhang Yaowen. Effects of Nitrogen and Phosphorus Application on Yield, Root Morphology and Photosynthetic Characteristics of Adzuki Bean [J]. Crops, 2023, 39(1): 109-114.
[2] Wang Yujiao, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Shi Shubing, Zhao Guangcai. Effects of Sowing Methods on Yield and Quality of Different Varieties of Wheat [J]. Crops, 2023, 39(1): 122-128.
[3] Chen Dong, Zou Jing, Guo Ganggang, Dai Wendian, Song Shaoguang, Huang Ying. Effects of Different Specifications of Seedling Trays on Quality and Main Physiological Characteristics of Tobacco Seedlings [J]. Crops, 2023, 39(1): 129-135.
[4] Zhao Jingyun, Lü Xinyun, Liu Xiaorong, Ren Haihong, Ren Xiaojun, Ma Junkui. Effects of Strip Compound Intercropping under Young Walnut Forest on Soybean Growth and Yield [J]. Crops, 2023, 39(1): 136-142.
[5] Yu Yongtao, Zhang Nan, Xie Lihua, Li Guangyu, Liu Jianhua, Li Wu, Li Gaoke, Hu Jianguang. A Preliminary Study on Preference of Consumers in Eating Quality Evaluation of Sweet Corn Germplasms [J]. Crops, 2023, 39(1): 14-19.
[6] Zhai Caijiao, Zhang Jiao, Cui Shiyou, Chen Pengjun, Han Jijun. Effects of Slow/Controlled Release Fertilizer Application on Growth, Yield and Quality of Rice under Salt Stress [J]. Crops, 2023, 39(1): 143-151.
[7] Li Wenshan, Zhang Junyao, Tang Jianghua, Xu Wenxiu, Xu Qinghua. Effects of Different Doses of AFD on Growth and Yield of Cotton [J]. Crops, 2023, 39(1): 158-162.
[8] Ma Ruiqi, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Nitrogen Application Rate on Yield and Quality of Weak Gluten Wheat in Northern Winter Wheat Region [J]. Crops, 2023, 39(1): 163-169.
[9] Jia Zhengrong, Hao Jiali, Hao Yanfang, Bai Wenbin, Zhang Jianhua, Guo Ruifeng, Liu Yong. Effects of Four Bacillus Species on Yield and Quality of Sweet Potato at Different Stages [J]. Crops, 2023, 39(1): 170-175.
[10] Su Cuicui, Wu Lingling, Zhao Xi, Shi Zhiguo, Zhou Yanfang, Wei Yujie. Effects of Sowing Date on the Growth, Quality and Yield of Safflower in Gansu Yellow River Irrigation Area [J]. Crops, 2023, 39(1): 176-183.
[11] Zhang Lixia, Guo Xiaoyan, Shi Pengfei, Nie Liangpeng, Ling Jingwei, Shen Peilin, Ding Li, Zhang Lin, Lü Yuhu, Pan Ziliang. Effects of Drought Stress on Growth, Yield and Benefits of Kenaf in Vigorous Growing Period [J]. Crops, 2023, 39(1): 184-189.
[12] Zhang Yonggang, Ren Zhiguang, Xu Zhiqiang, Liu Jianguo, Zhang Xiaobing, Liu Huabing, Xia Chen, Cheng Changhe. Chemical Quality Evaluation of Flue-Cured Tobacco Based on Maximization of Deviation and BP Neural Network [J]. Crops, 2023, 39(1): 190-195.
[13] Jin Haiyang, Zhang Suyu, Cui Jingyu, Li Xiangdong, Yue Junqin, Zhang Deqi, Yang Cheng, Fang Baoting, Wang Hanfang, Qin Feng. Regulatory Effects of Different Nitrogen Management Methods on Quality of Strong and Medium-Strong Gluten Wheat [J]. Crops, 2023, 39(1): 212-218.
[14] Wang Yanxun, Tian Jichun. Wide Adaptability Performance and Genetic Analysis of National Certified Wheat Variety Shannong 20 with High and Stable Yield [J]. Crops, 2023, 39(1): 46-51.
[15] Wang Qi, Xu Yanli, Yan Peng, Dong Haosheng, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of Polyaspartic Acid-Chitosan on Agronomic Traits, Yield and Nitrogen Use of Spring Foxtail Millet [J]. Crops, 2023, 39(1): 58-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!