Crops ›› 2023, Vol. 39 ›› Issue (3): 80-85.doi: 10.16035/j.issn.1001-7283.2023.03.011

Previous Articles     Next Articles

The Agronomic Characteristics and Sensitivity Identification to GA3 of a Dwarf Mutant Hai 5 in Panicum miliaceum L.

Guo Yingjie1,3(), Liu Yang1,3, Liu Xiaojie1,3, Wei Wei1,3, Wang Yao1,3, Zhang Shuai1, Wang Zhenshan2,3, Yan Liuyan2,3, Zhu Xuehai1,3(), Jia Xiaoping2,3()   

  1. 1Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China
    2College of Agronomy, Henan University of Science and Technology, Luoyang 471000, Henan, China
    3Zhangjiakou Hybrid Broomcorn Millet Technical Innovation Center, Zhangjiakou 075000, Hebei, China
  • Received:2022-01-11 Revised:2022-03-25 Online:2023-06-15 Published:2023-06-16

Abstract:

A dwarf mutant Hai 5 (dm5) in Panicum miliaceum L. was generated by EMS (ethyl methyl sulfonic acid) mutagenesis in landrace/historical cultivar Shihuqianjinmei, and its agronomic characteristics and phenotypic characteristics after spraying GA3 were analyzed using the morphological and cytological methods. The results showed that the plant height of dm5 was 60.72cm. The leaves were yellow at seedling stage and gradually turned green as the plant matured. Compared with wild type wt260, the plant height, panicle handle length, panicle height and internodes length of dm5 were significantly decreased, in which the 1st to 4th internodes were relatively decreased, as well as the number of tillers increased significantly. After spraying exogenous GA3, the plant height, panicle handle length and panicle height of dm5 increased significantly, while the number of stem nodes did not change significantly. It was preliminarily speculated that dm5 was sensitive to exogenous gibberellin and was a endogenous gibberellin synthesis defect type dwarf mutant. The internode length from the 1st to the 4th increased significantly, while the internode length from the 5th to the 8th had no significant change, indicating that the base stem node length had a great influence on the plant height of dwarf mutant in P.miliaceum L.. Longitudinal observation of the main stem cells revealed that the dwarfing of dm5 might be caused by the decrease in the length of the longitudinal cells of the stem node, and the increase of the plant heigth after spraying GA3 was caused by the elongation of the longitudinal cells. In conclusion, dm5 could be used as a dwarf breeding material for P.miliaceum L..

Key words: Panicum miliaceum L., Dwarf mutant, Agronomic characteristics, GA3

Fig.1

Plants of wt260 and dm5 at seedling and mature stages"

Table 1

Comparison of chlorophyll contents (SPAD value) of wt260 and dm5 at different stages"

生长时期Growth stage wt260 dm5
苗期Seedling stage 30.14±0.53A 19.96±0.77B
抽穗期Earing stage 31.53±0.65A 31.16±0.47A
成熟期Mature stage 24.40±1.18B 29.61±1.69A

Table 2

Agronomic traits of wt260 and dm5"

农艺性状Agronomic trait wt260 dm5
株高Plant height (cm) 104.72±2.63 60.72±1.15**
茎粗Stem diameter (mm) 6.36±0.44 5.48±0.40
茎节数Number of internode 8.70±0.26 8.60±0.16
分蘖数Tiller number 1.50±0.22 6.40±0.56**
穗柄长Panicle handle length (cm) 10.11±0.59 6.42±0.35**
穗长Panicle height (cm) 16.12±0.68 13.52±0.47**
倒3叶长度Inverted 3 leaf length (cm) 37.58±1.07 35.87±1.06
倒3叶宽度Inverted 3 leaf width (cm) 2.82±0.17 2.92±0.07
倒3叶叶面积Inverted 3 leaf area (cm2) 85.67±7.19 83.83±3.23

Fig.2

Internode length changes of wt260 and dm5 “**”indicates signi?cant differences at P < 0.01 level, the same below"

Table 3

Main phenotypic changes of wt260 and dm5 before and after spraying GA3"

指标
Index
材料
Material
处理Treatment
对照
Control
喷施GA3
Spraying GA3
株高Plant height (cm) wt260 104.72±2.63 133.20±3.43**
dm5 60.72±1.15 79.20±2.01**
茎节数Number of internodes wt260 8.70±0.26 9.20±0.37
dm5 8.60±0.16 8.20±0.37
穗柄长
Panicle handle length (cm)
wt260 10.11±0.59 12.80±1.24*
dm5 6.42±0.35 9.58±0.27**
穗长Panicle length (cm) wt260 16.12±0.68 19.00±0.96*
dm5 13.52±0.47 16.70±1.03**

Fig.3

Internode length change of wt260 (a) and dm5 (b) before and after spraying GA3"

Fig.4

Main stem longitudinal observation of wt260 and dm5 before and after spraying GA3"

[1] Lu H, Zhang J, Liu K, et al. Earliest domestication of common millet (Panicum miliaceum L.) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18):7367-7372.
[2] 杜春微, 高梦晗, 刘庆, 等. 黄米品质特性研究. 食品工业, 2018, 39(2):83-87.
[3] 董文轩, 杨文武, 武祎凡, 等. 青稞、荞麦、黍子、糜子、莜麦对于生长猪的营养价值评定. 中国畜牧杂志, 2019, 55(10):88-93.
[4] 乔治军. 糜子产业发展现状与思路. 作物杂志, 2013(5):25-27.
[5] 李星聪, 李强, 郭世华, 等. 30份糜子高代矮化品系主要农艺性状分析. 分子植物育种, 2022, 20(12):4075-4084.
[6] 杨志远. 矮秆基因RHT18对普通小麦农艺性状的效应及其对外源GA3的响应. 杨凌:西北农林科技大学, 2016.
[7] 田秀苓.小麦矮秆基因RHT24图位克隆与功能解析. 北京: 中国农业科学院, 2021.
[8] 钟明志, 魏淑红, 彭正松, 等. 小麦RHT矮秆基因研究和应用综述. 分子植物育种, 2018, 16(20):6670-6677.
[9] 石磊. 水稻矮秆窄叶突变体基因DNL3的图位克隆. 长沙:湖南农业大学, 2016.
[10] Wu Y, Fu Y, Zhao S, et al. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnology Journal, 2016, 14(1):377-386.
doi: 10.1111/pbi.12391 pmid: 25923523
[11] 王元东, 段民孝, 邢锦丰, 等. 玉米理想株型育种的研究进展与展望. 玉米科学, 2008, 16(3):47-50.
[12] 徐敏, 石海春, 余学杰, 等. 一个玉米矮秆突变体K123d的遗传鉴定. 植物遗传资源学报, 2017, 18(1):155-163.
[13] Ito A, Yasuda A, Yamaoka K, et al. Brachytic 1 of barley (Hordeum vulgare L.) encodes the α subunit of heterotrimeric G protein. Plant Physiology, 2017, 213:209-215.
[14] Multani S D. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003, 302(5642):81-84.
doi: 10.1126/science.1086072 pmid: 14526073
[15] Chen Y, Hou M, Liu L, et al. The maize DWARF 1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiology, 2014, 166(4):2028-2039.
doi: 10.1104/pp.114.247486 pmid: 25341533
[16] Larsso S J, Lipka A E, Buckler E S, et al. Lessons from dwarf 8 on the strengths and weaknesses of structured association mapping. PLoS Genetics, 2013, 9(2):e1003246.
doi: 10.1371/journal.pgen.1003246
[17] 杨睿, 张正, 杨丽莉, 等. 玉米矮杆突变体a5的表型鉴定及转录组分析. 山西大学学报(自然科学版), 2020, 43(3):597-603.
[18] 董春林, 翟广谦, 张正, 等. 玉米矮秆突变体a2的表型鉴定及转录组分析. 玉米科学, 2019, 27(4):52-57.
[19] 张磊, 何继红, 董孔军, 等. 氮肥对粳性和糯性糜子干物质积累和产量性状及氮肥利用效率的影响. 核农学报, 2021, 35(12):2860-2868.
doi: 10.11869/j.issn.100-8551.2021.12.2860
[20] Zhang Y Y, Gao X L, Li J, et al. Comparative analysis of proso millet (Panicum miliaceum L.) leaf transcriptomes for insight into drought tolerance mechanisms. BMC Plant Biology, 2019, 19(1):397.
doi: 10.1186/s12870-019-2001-x pmid: 31510928
[21] 刘敏轩, 许月, 陆平. 中国野生黍稷资源收集保存与遗传多样性研究进展. 植物遗传资源学报, 2020, 21(6):1435-1445.
doi: 10.13430/j.cnki.jpgr.20200522001
[22] 党科, 吕思明, 宫香伟, 等. 种植密度对糜子不同生育时期饲料品质的影响. 西北农业学报, 2021, 30(7):989-999.
[23] 郝小花, 向玉婷, 曾孟, 等. 水稻矮杆突变体的细胞学特征及基因定位研究. 生命科学研究, 2021, 25(1):39-47.
[24] 马宁. 甘蓝型油菜株高基因定位及候选基因分析. 杨凌:西北农林科技大学, 2021.
[25] 曹丽, 钱鹏, 张紫晋, 等. 航天搭载小麦矮秆突变体DMR88-1矮化效应分析. 核农学报, 2015, 29(11):2049-2057.
doi: 10.11869/j.issn.100-8551.2015.11.2049
[26] Rebetzke G J, Ellis M H, Bonnett D G, et al. The Rht13 dwarfing gene reduces peduncle length and plant height to increase grain number and yield of wheat. Field Crops Research, 2011, 24(3):323-331.
[27] Gooding M J, Addisu M, Uppal R. Effect of wheat dwarfing genes on nitrogen-use efficiency. Journal of Agricultural Science, 2012, 150(1):3-22.
[28] 崔淑佳, 潘晓萍, 高居荣, 等. 不同小麦品种(系)株高及节间长度研究. 山东农业科学, 2014, 46(10):19-22.
[29] 魏国才. 矮秆玉米的选育与利用. 黑龙江农业科学, 1999(3):64-65.
[30] 苏亚蕊, 孙少光, 刘浩婷, 等. 不同小麦品种(系)抗倒伏性状多样性分析. 麦类作物学报, 2021, 41(10):1238-1246.
[31] 勾玲, 赵明, 黄建军, 等. 玉米茎秆弯曲性能与抗倒能力的研究. 作物学报, 2008, 34(4):653-661.
[32] 程富丽, 杜雄, 刘梦星, 等. 玉米倒伏及其对产量的影响. 玉米科学, 2011, 19(1):105-108.
[1] Lu Yingji, Yang Xiaomeng, Pu Xiaoying, Li Xia, Yang Liʼe, Yang Yanbin, Zeng Yawen. Effects of Sowing and Seedling Cutting in Different Seasons on Agronomic Characteristics of Superior Barley Varieties [J]. Crops, 2023, 39(3): 215-220.
[2] Cao Zhimin, Fan Baojie, Liu Changyou, Zhang Zhixiao, Cao Yumei, Wang Yan, Su Qiuzhu, Wang Shen, Liu Jianjun, Tian Jing. Effects of 60Co on the Main Agronomic Characteristics of Mungbean and Creation of Specific Mutants [J]. Crops, 2023, 39(2): 30-35.
[3] Su Cuicui, Wu Lingling, Zhao Xi, Shi Zhiguo, Zhou Yanfang, Wei Yujie. Effects of Sowing Date on the Growth, Quality and Yield of Safflower in Gansu Yellow River Irrigation Area [J]. Crops, 2023, 39(1): 176-183.
[4] Wang Jinxiang, Wang Yanzhi, Xing Lixuan, Liu Jianxia, Wang Runmei. Effects of GA3 on Root Growth and Osmotic Regulation of Lübaonuo Broomcorn Millet Seedlings under Salt Stress [J]. Crops, 2022, 38(6): 98-104.
[5] Xiao Mingkun, Liu Guanghua, Song Jiming, Liu Qian, Duan Chunfang, Jiang Tailing, Zhang Linhui, Yan Wei, Shen Shaobin, Zhou Yingchun, Xiong Xiankun, Luo Xin, Bai Lina, Li Yuexian. Analysis of Agronomic Characteristics of Different Cassava Varieties (Lines) and Screening of High-Yielding Varieties (Lines) [J]. Crops, 2022, 38(4): 77-82.
[6] Gu Yuchao, Yang Yide, Yan Min, Liu Yong, Yang Jian, Xiang Jinyou, Luo Zhushi, Li Linqiu, Jing Yanqiu, Yang Yang. Effects of GA3 and 6-BA on Agronomic Traits and Chemical Components of Flue Cured Tobacco after Topping [J]. Crops, 2021, 37(6): 171-176.
[7] Zhao Lijuan,Yuan Hongmei,Zhao Liwei,Guo Wendong,Li Zhijiang,Li Xiangyu,Ma Jinfeng,Li Yandong,Song Weifu,Yang Xuefeng,Liu Dongjun. The Phenotypic Variations and GA Sensitivity of a Dwarf Mutant d93090 in Foxtail Millet [J]. Crops, 2019, 35(6): 27-32.
[8] Qu Zhihua,Bai Wei,Zhang Lili,Li Feng,Hu Yang,Qiao Haiming. Main Agronomic Characteristics Analysis on 170 Flax Germplasm Resources [J]. Crops, 2019, 35(4): 77-83.
[9] Ren Honglei,Li Chunxia,Gong Shichen,Li Guoliang,Hu Guanghui,Wang Mingquan,Yang Jianfei. Genetic Correlation and Path Analysis of Yield and Agronomic Characteristics of Maize Hybrids in SPSS Software [J]. Crops, 2019, 35(3): 86-90.
[10] Qiang Hu,Baofeng Jin,Pufan Zheng,Fucai Chen,Sitong Li,Kailun Mao,Hailun Liu,Yonghong Tang,Lixin Zhang. Effects of Exogenous GA3 and IAA on Quality of Upper Leaves of Flue-Cured Tobacco in Southern Shaanxi Province [J]. Crops, 2016, 32(6): 135-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!