Crops ›› 2019, Vol. 35 ›› Issue (6): 27-32.doi: 10.16035/j.issn.1001-7283.2019.06.005

Previous Articles     Next Articles

The Phenotypic Variations and GA Sensitivity of a Dwarf Mutant d93090 in Foxtail Millet

Zhao Lijuan1,Yuan Hongmei2,Zhao Liwei3,Guo Wendong4,Li Zhijiang1,Li Xiangyu1,Ma Jinfeng1,Li Yandong1,Song Weifu1,Yang Xuefeng1,Liu Dongjun1   

  1. 1Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang,China
    2Industrial Crops Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086,Heilongjiang, China
    3Comprehensive Agricultural Technology Service Center, Yangshu Town Government of Acheng District, Harbin 150314, Heilongjiang, China
    4Nature and Ecology Institute, Heilongjiang Academy of Sciences, Harbin 150040, Heilongjiang,China
  • Received:2019-05-17 Revised:2019-10-12 Online:2019-12-15 Published:2019-12-11

Abstract:

Abstact A stably inherited dwarf mutant d93090 was obtained from a wild type tall line 93090 in foxtail millet induced by 60Co-γ irradiation. Then its dwarfing morphology and the characteristics response to gibberellin were analyzed. The results showed: Compared with the wild type, the plant height of the dwarf mutant was about 60% of that of the wild type. And other features, such as darker leaves in color, slightly sloping stem, the same stem nodes and delayed flowering time of about 3-5 days were also observed. The seedling length, the length of second leaf sheath and hypocotyl length at seedling stage were sensitive to exogenous GA3. While exogenous GA3 was sprayed at jointing stage, plant height of dwarf mutant was partially restored. The content of endogenous GAl in dwarf mutant was significantly lower than that in wild type. It can be concluded this mutant is a semi-dwarf mutant and is related to the GA metabolic pathway. This study provides new germplasm for dwarf breeding in foxtail millet.

Key words: Foxtail millet, Semi-dwarf mutant, Phenotype, GA3 sensitivity

Table 1

Plant height, leaf numbers, leaf length and width of d93090 and wild type at early jointing stage cm"

材料
Meterial
株高
Plant height
叶片数
Leaf number
第4叶长
4th leaf length
第5叶长
5th leaf length
第6叶长
6th leaf length
第4叶宽
4th leaf width
第5叶宽
5th leaf width
第6叶宽
6th leaf width
WT 44.5±4.8 11.9±0.6 49.3±2.4 45.5±1.7 39.7±3.2 2.32±0.2 2.18±0.2 2.03±0.1
d93090 33.4±2.2** 11.4±0.5 46.0±2.0** 42.4±1.3** 36.4±1.8** 2.33±0.1 2.20±0.1 2.00±0.1

Table 2

Plant height, leaf numbers, leaf length and width of d93090 and wild type at flowering stage cm"

材料
Meterial
株高
Plant height
叶片数
Leaf number
第1叶长
1st leaf length
第2叶长
2nd leaf length
第3叶长
3rd leaf length
第2叶宽
2nd leaf width
第3叶宽
3rd leaf width
WT 175.5±4.50 13.2±0.40 39.20±2.60 41.85±2.30 44.35±2.40 2.78±0.20 2.57±0.05
d93090 107.0±1.60** 12.8±0.60 40.17±2.00 45.36±2.20** 47.30±1.40** 2.95±0.01 2.77±0.10

Table 3

Comparition of plant height and panicle characters of d93090 and wild type at mature stage"

材料
Meterial
株高(cm)
Plant height
穗长(cm)
Panicle length
穗粗(cm)
Panicle diameter
穗重(g)
Panicle weight
穗粒重(g)
Grain weight per panicle
千粒重(g)
1000- seed weight
WT 176.05±4.4 18.5±1.4 2.4±0.2 20.9±3.4 18.45±3.1 1.67±0.1
d93090 107.25±1.7** 24.1±0.8** 2.3±0.2 20.2±2.2 17.20±2.0 1.67±0.1

Fig.1

Internode length of each stem node of wild type and d93090 at mature stage"

Fig.2

Internode length changes of corresponding stem node of wild type and d93090 at mature stage"

Fig.3

Variations induced by different concentrations of GA3, BR and IAA in the length, the second sheath length and hypocotyl length of seedlings"

Fig.4

Recovery of plant height after spraying plant hormone in greenhouse "***" represents P<0.001, the same below"

Fig.5

Content of endogenous GA1 in d93090 and wild type at different growth stages "**" represents P<0.01"

[1] Huang N, Courtois B, Wang G L . Association of quantitative trait loci for plant height with major dwarfing genes in rice. Heredity, 1996,77(2):130-137.
doi: 10.1038/hdy.1996.117
[2] Yang X C, Hwa C M . Genetic modification of plant architecture and variety improvement in rice. Heredity, 2008,101(5):396-404.
doi: 10.1038/hdy.2008.90 pmid: 18716608
[3] Asano K, Miyao A, Hirochika H , et al. SSD1,which encodes a plant-specific novel protein,controls plant elongation by regulating cell division in rice. Proceedings of the Japan Academy Series B-Physical and Biological Sciences, 2010,86(3):265-273.
[4] Wang M L, Zhao Y, Chen F , et al. Inheritance and potentials of a mutated dwarfing gene ndf1 in Brassica napus. Plant Breeding, 2004,123(5):449-453.
doi: 10.1111/pbr.2004.123.issue-5
[5] Doebley J, Stec A, Hubbard L . The evolution of apical dominance in maize. Nature, 1997,386:485-488.
doi: 10.1038/386485a0 pmid: 9087405
[6] Mitsunaga S, Tashiro T, Yamaguchi J . Identification and characterization of gibberellin-insensitive mutants selected from among dwarf mutants of rice. Theoretical and Applied Genetics, 1994,87(6):705-712.
doi: 10.1007/BF00222896 pmid: 24190414
[7] Kobayashi M, Sakurai A, Saka H , et al. Quantitative analysis of endogenous gibberellins in normal and dwarf cultivars of rice. Plant Cell Physiology, 1989,30:963-969.
[8] Sasaki A, Itoh H, Gomi K , et al. Accumulation of phosphorylated repressor for gibberellin signaling in art F-box mutant. Science, 2003,299:1896-1898.
doi: 10.1126/science.1081077 pmid: 12649483
[9] Ueguchi-Tanaka M, Ashikari M, Nakajima M , et al. Gibberellin insensitive dwarf1 encodes a soluble receptor for gibberellins. Nature, 2005,437:693-698.
doi: 10.1038/nature04028 pmid: 16193045
[10] 李文强 . 水稻矮秆基因d62和光叶基因gl1的图位克隆及功能研究. 杭州:浙江大学, 2010.
[11] Khush G S . Greenrevolution:the way forward. Nature Reviews Genetics, 2001,2(10):815-822.
doi: 10.1038/35093585 pmid: 11584298
[12] 赵丽娟, 马金丰, 李延东 , 等. 60Co-γ射线辐射谷子干种子诱变效应的研究. 作物杂志 , 2017(1):38-43.
[13] 田伯红 . 禾谷类作物抗倒伏性的研究方法与谷子抗倒性评价. 植物遗传资源学报, 2013,14(2):265-269.
[14] 刘秉华, 王山荭, 杨丽 , 等. 不同遗传背景矮败小麦的性状表现. 作物学报, 2001,27(2):207-211.
[15] Ellis M H, Spielmeyer W, Gale K R , et al. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 2002,105(6/7):1038-1042.
doi: 10.1007/s00122-002-1048-4 pmid: 12582931
[16] 陈亮 . 矮秆基因Rht12对小麦重要农艺性状的遗传效应及新矮秆突变体的筛选. 杨凌:西北农林科技大学, 2014.
[17] 李杏普, 兰素缺, 张业伦 , 等. Rht8、Rht10、Rht12矮杆基因对小麦营养生长和生殖生长发育的影响. 华北农学报, 2009,24(S1):50-53.
doi: 10.7668/hbnxb.2009.S1.013
[18] 唐娜 . 矮秆基因在小麦抗旱节水选育中的利用研究. 杨凌:西北农林科技大学, 2009.
[19] Li W, Wu J, Weng S , et al. Identification and characterization of dwarf 62,a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. Planta, 2010,232(6):1383-1396.
doi: 10.1007/s00425-010-1263-1
[20] Thomas S G, Sun T . Update on gibberellin signaling. A tale of the tall and the short. Plant Physiology, 2004,135(2):668-676.
doi: 10.1104/pp.104.040279 pmid: 15208413
[21] Bennetzen J L, Schmutz J, Wang H , et al. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012,30(6):555-561.
doi: 10.1038/nbt.2196
[22] Zhang G Y, Liu X, Quan, Z W , et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012,30(6):549-554.
doi: 10.1038/nbt.2195
[1] Zhang Di,Miao Xingfen,Wang Yuting. Evaluation and Screening of Salt Tolerance in 100 Foxtail Millet at Germination Stage [J]. Crops, 2019, 35(6): 43-49.
[2] Yue Linqi,Shi Weiping,Guo Jiahui,Guo Pingyi,Guo Jie. Response of Cutin Synthetic Genes of Foxtail Millet to Drought Stress [J]. Crops, 2019, 35(4): 183-190.
[3] Li Yanfang,Du Yanwei,Zhang Zheng,Wang Gaohong,Zhao Genyou,Zhao Jinfeng,Yu Aili. Establishment and Optimization of Agrobacterium Mediated Transformation System for Mature Embryo of Foxtail Millet [J]. Crops, 2019, 35(3): 73-79.
[4] Yanwei Du,Jinfeng Zhao,Gaohong Wang,Yanfang Li,Genyou Zhao,Xiaoguang Yan. Study of Lodging Resistance of Spring-Sowing Foxtail Millet in Maturity Stages [J]. Crops, 2019, 35(1): 141-145.
[5] Wang Xiaolin,Ji Xiaoling,Zhang Panpan,Zhang Xiong,Zhang Jing. Correlation Analysis between Aboveground Biomass Allocation and Grain Yield in Different Varieties of Foxtail Millet in the Dry Land of Loess Plateau [J]. Crops, 2018, 34(5): 150-155.
[6] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China [J]. Crops, 2018, 34(4): 42-47.
[7] Xiaodong Dai,Cancan Zhu,Na Qin,Yufeng Yang,Yannan Wang,Guohong Yang,Bing Si,Shihui Liu,Junxia Li. Effects of Uniconazole and Plant Density on Yield and Its Relavent Components of Foxtail Millet [J]. Crops, 2017, 33(2): 104-108.
[8] Gouliang Song,Xiaolei Feng,Guangyu Fan,Gaolei Shi,Shuangdong Li,Feng Wang,Xiaoming Wang,Zhihai Zhao. Analysis of Parental Combining Ability of New Sterile Lines in Foxtail Millet [J]. Crops, 2017, 33(2): 44-50.
[9] Zhihua Li,Xiaolan Jing,Huixia Li,Gang Tian,Xin Liu,Tingting Mu. Safety and Weed Control Efficiency of Foxtail Millet Seedling Stage Herbicides [J]. Crops, 2017, 33(1): 150-154.
[10] Tingting Mu,Huiling Du,Xiaolan Jing,Zhihua Li,Qi Guo,Gang Tian,Huixia Li,Zhang Liu. Effects of Exogenous Selenium on Yield Components and Selenium Content in Grain of Foxtail Millet [J]. Crops, 2017, 33(1): 73-78.
[11] Lijuan Zhao,Jinfeng Ma,Yandong Li,Xiangyu Li,Zhijiang Li,Hongmei Yuan,Wendong Guo. Mutagenic Effects of 60Co-γ-Ray Radiation on Dry Seeds of Foxtail Millet [J]. Crops, 2017, 33(1): 38-43.
[12] Xiaodong Dai,Xinzhi Xu,Cancan Zhu,Yufeng Yang,Na Qin,Yannan Wang,Chunyi Wang,Xiaoping Yang,Guohong Yang,Junxia Li. Study on the Effects of N P K Fertilizer in Foxtail Millet [J]. Crops, 2016, 32(5): 147-151.
[13] Xiaodong Dai,Xinzhi Xu,Cancan Zhu,Yufeng Yang,Chunyi Wang,Xiaoping Yang,Guohong Yang,Junxia Li. Seeding Stage Response to Different Water Availability and Drought Resistance Evaluation of Foxtail Millet [J]. Crops, 2016, 32(1): 140-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[3] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[4] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[5] Cao Tingjie,Zhang Yu’e,Hu Weiguo,Yang Jian,Zhao Hong,Wang Xicheng,Zhou Yanjie,Zhao Qunyou,Li Huiqun. Detection of Three Dwarfing Genes in the New Wheat Cultivars (Lines) Developed in South Huang-Huai Valley and Its Association with Agronomic Traits[J]. Crops, 2019, 35(6): 14 -19 .
[6] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[10] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .