作物杂志,2016, 第4期: 62–67 doi: 10.16035/j.issn.1001-7283.2016.04.010

• 遗传育种·种质资源·生物科技 • 上一篇    下一篇

亚麻糖基转移酶基因LuUGT72E1的克隆与表达分析

袁红梅1,2,郭文栋3,赵丽娟4,于莹2,吴建忠2,程莉莉2,赵东升2,康庆华2,黄文功2,姚玉波2,宋喜霞2,姜卫东2,刘岩2,马廷芬2,吴广文2,关凤芝2   

  1. 1 黑龙江省农业科学院博士后工作站,150086,黑龙江哈尔滨
    2 黑龙江省农业科学院经济作物研究所,150086,黑龙江哈尔滨
    3 黑龙江省科学院自然与生态研究所,150040,黑龙江哈尔滨
    4 黑龙江省农业科学院作物育种所,150086,黑龙江哈尔滨
  • 收稿日期:2016-04-19 修回日期:2016-06-06 出版日期:2016-08-15 发布日期:2018-08-26
  • 通讯作者: 关凤芝
  • 作者简介:作者简介:袁红梅,副研究员,从事作物遗传育种研究
  • 基金资助:
    哈尔滨市科技局创新人才项目(2013RFQYJ162);黑龙江省博士后项目(LBH-Z13181);国家麻类产业技术体系(CARS-19-S03)

Cloning and Expression Analysis of the Glycosyltransferase Gene LuUGT72E1 in Flax

Yuan Hongmei1,2,Guo Wendong3,Zhao Lijuan4,Yu Ying2,Wu Jianzhong2,Cheng Lili2,Zhao Dongsheng2,Kang Qinghua2,Huang Wengong2,Yao Yubo2,Song Xixia2,Jiang Weidong2,Liu Yan2,Ma Tingfen2,Wu Guangwen2,Guan Fengzhi2   

  1. 1 Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme,Harbin 150086,Heilongjiang,China
    2 Industrial Crops Institute,Heilongjiang Academy of Agricultural Sciences,Harbin 150086,Heilongjiang,China
    3 Nature and Ecology Institute,Heilongjiang Academy of Sciences,Harbin 150040,Heilongjiang,China
    4 Crop Breeding Institute,Heilongjiang Academy of Agricultural Sciences,Harbin 150086,Heilongjiang,China
  • Received:2016-04-19 Revised:2016-06-06 Online:2016-08-15 Published:2018-08-26
  • Contact: Fengzhi Guan

摘要:

以亚麻茎部组织总RNA为模版,通过反转录PCR获得糖基转移酶LuUGT72E1基因的全长开放读码框序列。序列分析结果表明:开放读码框全长1 476bp,共编码491个氨基酸。通过多氨基酸比对发现,该蛋白与亚麻UGT72N2蛋白亲缘关系最近,相似度达99%,与毛果杨、巨桉、木薯、雷蒙德氏棉及拟南芥UGT72E1蛋白的氨基酸序列相似性在58%~51%。分子进化分析表明,该蛋白与拟南芥UGT72E1~3聚为一类,推测该蛋白参与木质素单体的糖基化修饰过程。基因表达谱结果表明,该基因被BR、Brz诱导下调表达。本研究为亚麻的纤维品质改良提供了候选基因。

关键词: 亚麻, 糖基转移酶, 克隆, 表达分析

Abstract:

The total RNA extracted from flax stems was used for RT-PCR, then the full-length open reading frame (ORF) sequence of glycosyltransferase gene (LuUGT72E1) was amplified. The sequence analysis showed that the full-length ORF of LuUGT72E1 consisted of 1 476bp, encoding 491 amino acids. Homology analysis of the deduced amino acid showed 99% identity to UGT72N2 from flax and 58% to 51% identity to UGT72E1 from Populus trichocarpa, Eucalyptus grandis, Manihot esculenta, Gossypium raimondii and Arabidopsis thaliana. The phylogeny analysis showed that this protein clustered with UGT72E1~3 from Arabidopsis and might play key roles in the process of monolignols glucosylation. The gene expression profiling showed that LuUGT72E1 gene could be induced by BR and Brz. This study could provide candidate genes for fibre improvementin flax.

Key words: Flax, Glycosyltransferase, Cloning, Expression analysis

图1

LuUGT72E1基因克隆电泳结果 M:DNA marker(DL2000);1.cDNA模板PCR扩增产物"

图2

LuUGT72E1的核苷酸序列和推导的氨基酸序列"

图3

LuUGT72E1蛋白的预测功能结构域"

图4

糖基转移酶氨基酸序列的多序列比对"

图5

亚麻和拟南芥糖基转移酶基因家族的进化关系"

图6

BR、Brz诱导木质素合成相关基因的表达分析"

[1] Franke R, Hemm M R, Denault J W , et al. Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Planta, 2002,30(1):47-59.
[2] Novaes E, Kirst M, Chiang V , et al. Lignin and biomass:a negative correlation for wood formation and lignin content in trees. Plant Physiology, 2010,154(2):555-561.
doi: 10.1104/pp.110.161281
[3] 魏建华, 宋艳茹 . 木质素生物合成途径及调控的研究进展. 植物学报, 2001,43(8) : 771-779.
[4] 陈晓光, 史春余, 尹燕枰 , 等. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011,37(9):1616-1622.
doi: 10.3724/SP.J.1006.2011.01616
[5] Jones L, Ennos A R, Turner S R . Cloning and characterization of irregular xylem4 (irx4):A severely lignin-deficient mutant of Arabidopsis. Planta, 2001,26(2):205-216.
[6] Ruben V, Véronique S, Bartel V , et al. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell, 2012,24(9):3506-3529.
doi: 10.1105/tpc.112.102574
[7] Marie B, Bernard M, Marc V M , et al. Biosynthesis and genetic enginering of lignin. Critical Reviews in Plant Sciences, 1998,17(2):125-197.
doi: 10.1080/07352689891304203
[8] Barry H . Lignin synthesis:the generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese(II) and phenols. Planta, 1978,140(1):81-88.
doi: 10.1007/BF00389384
[9] Du X, Gellerstedt G, Li J . Universal fractionation of lignin-carbohydrate complexes(LCCs) from lignocellulosic biomass:an example using spruce wood. Planta, 2013,74(2):328-338.
[10] Xu L, Nicholas D B, Jing K W , et al. The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. The Plant Cell, 2010,22(5):1620-1632.
doi: 10.1105/tpc.110.074161
[11] Du X Y, Marta P B, Carmen F , et al. Analysis of lignin-carbohydrate and lignin-lignin linkages after hydrolase treatment of xylan-lignin,glucomannan-lignin and glucan-lignin complexes from spruce wood. Planta, 2014,4(15):323-358.
[12] Hao Z, Mohnen D . A review of xylan and lignin biosynthesis:Foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes.Critical Reviews Biochemistry Molecular Biology, 2014( doi:10.3109/10409238.2014.889651).
[13] 王艳文 .杨树糖基转移酶与木质素合成关系的转基因研究. 济南:山东大学, 2012.
[14] Lanot A, Hodge D, Jackson R G , et al. The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis. Planta, 2006,48(2):286-295.
[15] Lanot A, Hodge D, Lim E K , et al. Redirection of flux through the phenylpropanoid pathway by increased glucosylation of soluble intermediates. Planta, 2008,228(4):609-616.
doi: 10.1007/s00425-008-0763-8
[16] Baucher M, Bernard-Vailhé M A,Chabbert B, et al. Down-regulation of cinnanyl alcohol dehydrogenase in transgenic alfalfa(Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Molecular Biology, 1999,39(3):437-447.
doi: 10.1023/A:1006182925584
[17] Li X C, Richard F H . Synthesis and rearrangement reactions of ester-linked lignin-carbohydrate model compounds. Journal of Agricultural and Food Chemistry, 1995,43(8):2098-2103.
doi: 10.1021/jf00056a026
[18] Paquette S, Møller B L, Bak S . On the origin of family 1 plant glycosyltransferases. Phytochemistry, 2003,62(3):399-413.
doi: 10.1016/S0031-9422(02)00558-7
[19] Lim E K, Bowles D J . A class of plant glycosyltransferases involved in cellular homeostasis. The EMBO Journal, 2004,23(15):2915-2922.
doi: 10.1038/sj.emboj.7600295
[20] Bowles D, Isayenkova J, Lim E K , et al. Glycosyltransferases:Managers of small molecules. Current Opinion in Plant Biology, 2005,8(3):254-263.
doi: 10.1016/j.pbi.2005.03.007
[21] Gachon C M, Langlois-Meurinne M, Saindrenan P . Plant secondary metabolism glycosyltransferases:The emerging functional analysis. Trends in Plant Science, 2005,10(11):542-549.
doi: 10.1016/j.tplants.2005.09.007
[22] Lim E K . Plant glycosyltransferases:Their potential as novel biocatalysts. Chemistry:A European Journal, 2005,11(19):5487-5494.
[23] Li Y, Baldauf S, Lim E K , et al. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. The Journal of Biological Chemistry, 2001,276(6):4338-4343.
doi: 10.1074/jbc.M007447200
[24] Ross J, Li Y, Lim E , et al. Higher plant glycosyltransferases. Genome Biology, 2001,2(2):31-36.
[1] 罗海斌, 蒋胜理, 黄诚梅, 曹辉庆, 邓智年, 吴凯朝, 徐林, 陆珍, 魏源文. 甘蔗ScHAK10基因克隆及表达分析[J]. 作物杂志, 2018, (4): 53–61
[2] 岳德成,史广亮,韩菊红,姜延军,柳建伟,李青梅. 全膜双垄沟播玉米田覆盖化学除草地膜对后茬亚麻生长发育的影响[J]. 作物杂志, 2016, (6): 148–153
[3] 王树彦,韩冰,周四敏,徐军. 油用亚麻可溶性糖、脂肪含量与硬脂酰-酰基载体蛋白脱氢酶基因表达相关性分析[J]. 作物杂志, 2016, (4): 56–61
[4] 韩赞平,陈彦惠,郭书磊,祖小峰,王顺喜,赵西拥. 玉米抗逆基因ZmqLTG3-1的克隆及功能分析[J]. 作物杂志, 2016, (4): 47–55
[5] 李钰,郑文寅,冯春,王荣富,李娟. 非生物逆境胁迫下普通小麦烟农19幼苗FeSOD基因表达分析[J]. 作物杂志, 2016, (4): 75–79
[6] 姚玉波,吴广文,黄文功,康庆华,姜卫东,路颖,张树权. 不同基因型亚麻钾利用效率差异分析[J]. 作物杂志, 2016, (4): 80–85
[7] 曹秀霞,钱爱萍,张炜,杨崇庆. 锌肥不同用量对旱地油用亚麻生长及种子产量的影响[J]. 作物杂志, 2016, (3): 167–170
[8] 郭媛, 邱财生, 龙松华, 等. 种子萌发期亚麻种质资源耐镉性的鉴定评价[J]. 作物杂志, 2015, (6): 39–43
[9] 郭媛, 邱财生, 龙松华, 等. 福胁迫对不同地区亚麻主栽品种种子萌发的影响[J]. 作物杂志, 2015, (4): 146–151
[10] 吴鹏, 郭茜茜, 武涛, 等. 黄瓜ABC转运蛋白基因(abca19)的克隆及其对农药霜霉威胁迫的响应[J]. 作物杂志, 2015, (3): 45–51
[11] 李丹丹, 韩冰, 王树彦, 等. 亚麻子中α-亚麻酸及参与其形成的不饱和脂肪酸的研究进展[J]. 作物杂志, 2015, (2): 18–22
[12] 吴文荣, 牛瑞明, 苑莹, 等. 外源NO对模拟干旱胁迫下亚麻种子发芽及幼苗生长的影响[J]. 作物杂志, 2015, (1): 143–147
[13] 吴建忠. 亚麻纤维素合酶关键基因(LusiCesAl)的克隆[J]. 作物杂志, 2014, (6): 36–39
[14] 陈芳, 党占海, 张建平, 等. 不同基因型亚麻下胚轴不定芽诱导的研究[J]. 作物杂志, 2014, (3): 39–43
[15] 孟繁君, 陈明, 徐长营, 等. 玉米C2H2型锌指蛋白基因ZFP225的鉴定、生物信息学分析与克隆[J]. 作物杂志, 2014, (1): 49–53
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!