作物杂志,2020, 第4期: 37–44 doi: 10.16035/j.issn.1001-7283.2020.04.006

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

普通小麦-野生二粒小麦染色体臂置换系籽粒与品质性状分析

王中秋(), 应鹏飞, 陈梦涛, 贺琼颖, 胡鑫()   

  1. 浙江农林大学农业与食品科学学院/浙江省农产品品质改良技术研究重点实验室,311300,浙江临安
  • 收稿日期:2019-11-11 修回日期:2019-11-21 出版日期:2020-08-15 发布日期:2020-08-11
  • 通讯作者: 胡鑫
  • 作者简介:王中秋,主要从事植物新品种选育研究,E-mail: 1106977276@qq.com
  • 基金资助:
    浙江省农业(粮食)新品种选育重大科技专项(2016C02050);浙江农林大学学生科研训练项目(KX20180023)

Analysis of Grain and Quality Traits of Chromosome Arm Substitution Lines of Triticum dicoccoides in the Background of Triticum aestivum

Wang Zhongqiu(), Ying Pengfei, Chen Mengtao, He Qiongying, Hu Xin()   

  1. School of Agriculture and Food Science, Zhejiang A & F University/Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Lin’an 311300, Zhejiang, China
  • Received:2019-11-11 Revised:2019-11-21 Online:2020-08-15 Published:2020-08-11
  • Contact: Hu Xin

摘要:

野生二粒小麦在农艺性状和品质性状上具有丰富的遗传变异,这些优异基因的导入对促进优质小麦生产具有重要的意义。以普通小麦品种Bethlehem(BLH)为遗传背景的野生二粒小麦染色体臂置换系(chromosome arm substitution lines,CASLs)为材料,进行2年一点田间试验,考察籽粒(粒长、粒宽和千粒重)与品质相关性状(蛋白质含量、湿面筋含量、沉降值、淀粉含量和灰分含量)。结果表明:CASLs群体中3AL 2年的粒长均显著长于亲本BLH,推测3AL染色体上至少有1个正效QTL控制野生二粒小麦的粒长,至少3个控制粒长的负效QTLs分别位于4BS、6BL和7BL,至少11个控制千粒重的负效QTLs分别位于2AS、5AS、6AL、7AS、1BS、1BL、4BS、4BL、5BL、6BL和7BL,至少6个与蛋白质含量正相关的QTLs分别位于6AL、1BS、2BS、3BL、7BS和7BL,至少3个控制湿面筋形成的正效QTLs分别位于2BL、7BS和7BL,至少3个控制沉降值的主效QTLs分别位于4AL、7AL和7BL,至少1个控制淀粉形成的负效QTL位点位于7BL;至少1个促进小麦籽粒灰分含量增加的QTL位于7BL上。相关性分析表明,千粒重与蛋白质含量、湿面筋含量、沉降值和灰分含量呈显著或极显著的负相关,蛋白质含量与湿面筋含量、沉降值和灰分含量均呈极显著正相关,而与淀粉含量呈极显著负相关。综上所述,CASLs群体具有丰富的遗传多样性,且每个置换系只含有对应野生二粒小麦的染色体臂,各置换系有着不同的遗传特点,因此,可以综合利用置换系的有利性状对小麦目标性状进行遗传改良,进而为小麦育种提供更加丰富的遗传资源。

关键词: 野生二粒小麦, 染色体臂置换系, 籽粒性状, 品质性状, 相关性分析

Abstract:

To excavate the excellent genetic resources of wild emmer, the wild emmer chromosome arm substitution lines with the common wheat variety Bethlehem (BLH) as the genetic background was chosen. The yield related traits (grain length, grain width and 1000-grain weight) and quality related traits (protein content, wet gluten content, zeleny, starch content, and ash content) were investigated. The results showed that, the grain length of 3AL during two years was significantly longer than that of the parent BLH, suggesting at least one positive QTL for grain length on the 3AL chromosome arm of wild emmer. Similarly, at least three negative QTLs controlling grain length were located on 4BS, 6BL, and 7BL, respectively. At least 11 negative QTLs for 1000-grain weight were located on 2AS, 5AS, 6AL, 7AS, 1BS, 1BL, 4BS, 4BL, 5BL, 6BL and 7BL, respectively. At least six positive QTLs increasing protein content distributed on 6AL, 1BS, 2BS, 3BL, 7BS and 7BL, respectively. At least three positive QTLs responsible for wet gluten content were scattered at 2BL, 7BS and 7BL. At least three major QTLs controlling sedimentation value located at 4AL, 7AL and 7BL. Negative QTL site controlling starch content positioned at 7BL. QTL for ash content of wheat grain was on 7BL. Correlation analysis showed negative correlation between grain weight and protein content, wet gluten content, the zeleny and ash content, while the protein content was positively correlated with the wet gluten content, the zeleny, and the ash content and negatively correlated with starch content. Results showed that CASLs group are rich in genetic diversity, and each substitution lines only contains the chromosome arms corresponding to wild emmer, each of which has different genetic characteristics, so it can comprehensively utilize the favorable traits of the substitution lines.

Key words: Triticum dicoccoides, Chromosome arm substitution lines, Grain trait, Quality trait, Correlation analysis

表1

小麦CASLs群体的籽粒性状与品质性状遗传变异分析

性状Trait 年份
Year
亲本Parent BLH CASLs群体CASLs population
最小值Min 最大值Max 变幅Range 平均数Mean 变异系数Variable coefficient (%)
粒长Grain length (mm) 2018 6.80 5.90 7.30 1.40 6.50 4.60
2019 6.70 5.90 7.50 1.50 6.60 4.80
均值Mean 6.75 5.90 7.38 1.47 6.55 4.70
粒宽Grain width (mm) 2018 3.30 2.90 3.60 0.70 3.30 5.20
2019 3.20 2.80 3.70 0.90 3.20 6.80
均值Mean 3.25 2.86 3.66 0.81 3.25 6.00
千粒重1000-grain weight (g) 2018 42.13 32.20 44.70 12.50 38.83 7.30
2019 41.39 29.05 42.74 13.69 38.11 7.40
均值Mean 41.76 30.63 43.72 13.10 38.47 7.35
蛋白质含量Protein content (%) 2018 13.53 12.24 18.55 6.31 13.89 8.30
2019 13.43 12.38 16.99 4.61 13.73 6.60
均值Mean 13.48 12.31 17.77 5.46 13.81 7.45
湿面筋含量Wet gluten content (%) 2018 26.75 24.18 38.99 14.81 28.44 9.50
2019 27.45 24.20 35.87 11.67 28.04 7.40
均值Mean 27.10 24.19 37.43 13.24 28.24 8.45
沉降值Zeleny (mL) 2018 40.55 32.15 62.75 30.60 41.32 13.10
2019 40.99 32.43 51.65 19.22 40.63 9.90
均值Mean 40.77 32.29 57.20 24.91 40.98 11.50
淀粉含量Starch content (%) 2018 58.42 53.11 60.72 7.61 58.23 2.20
2019 58.25 53.12 61.56 8.44 58.35 2.60
均值Mean 58.34 53.12 61.14 8.03 58.29 2.40
灰分含量Ash content (%) 2018 0.51 0.48 0.56 0.08 0.51 3.40
2019 0.52 0.49 0.59 0.10 0.53 3.40
均值Mean 0.52 0.49 0.58 0.09 0.52 3.40

图1

小麦CASLs群体的籽粒性状与亲本的差异 “*”表示置换系与亲本之间差异显著(P<0.05)。下同

图2

小麦CASLs群体的品质性状与亲本的差异

表2

主要性状之间的相关性分析

2018年
In 2018
粒长
Grain length
粒宽
Grain width
千粒重
1000-grain weight
蛋白质含量
Protein content
湿面筋含量
Wet gluten content
沉降值
Zeleny
淀粉含量
Starch content
灰分含量
Ash content
2019年
In 2019
粒长 -1 -0.81** -0.61** -0.27* -0.26* -0.15 -0.27* -0.18 粒长
粒宽 -0.57** -1 -0.43** -0.25* -0.25* -0.15 -0.33** -0.20 粒宽
千粒重 -0.47** -0.41* -1 -0.48** -0.46** -0.39** -0.16 -0.28 千粒重
蛋白质含量 -0.18 -0.38* -0.47** -1 -0.96** -0.84** -0.68** -0.55** 蛋白质含量
湿面筋含量 -0.15 -0.39* -0.55** -0.96** -1 -0.87** -0.64** -0.56** 湿面筋含量
沉降值 -0.23* -0.12 -0.56** -0.88** -0.89** -1 -0.58** -0.45** 沉降值
淀粉含量 -0.20 -0.31* -0.27* -0.77** -0.77** -0.66** -1 -0.65** 淀粉含量
灰分含量 -0.17 -0.22 -0.33* -0.68** -0.67** -0.60** -0.63** -1 灰分含量
[1] 何中虎, 庄巧生, 程顺和 , 等. 中国小麦产业发展与科技进步. 农学学报, 2018,8(1):99-106.
[2] 2018/19年度全球粮食产量预计. 养猪, 2018(5):9.
[3] 孔欣欣, 张艳, 赵德辉 , 等. 北方冬麦区新育成优质小麦品种面条品质相关性状分析. 作物学报, 2016,42(8):1143-1159.
[4] 鞠兴荣, 袁建, 汪海峰 , 等. 小麦主要质量指标与面条品质关系的研究. 粮食与饲料工业, 2005(12):10-12.
[5] 李建勇, 王正银 . 小麦品质影响因素研究进展. 陕西农业科学, 2007(6):100-104.
[6] 高居荣, 樊广华, 李圣福 , 等. 近红外光谱技术分析小麦品质的应用研究. 实验技术与管理, 2009,26(3):42-44.
[7] 高居荣, 韩秀兰, 孙彩玲 , 等. DA7200近红外仪在小麦品质分析中的应用研究. 实验室科学, 2009(1):173-176.
[8] Chloupek O, Dostál V, Středa T , et al. Drought tolerance of barley varieties in relation to their root system size. Plant Breeding, 2010,129(6):630-636.
[9] Huang L, Raats D, Sela H , et al. Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses. Annual Review of Phytopathology, 2016,54(1):279-301.
[10] Nevo E, Payne P I . Wheat storage proteins:diversity of HMW glutenin subunits in wild emmer from Israel. Theoretical and Applied Genetics, 1987,74(6):827-836.
[11] Zohary D . Wild genetic resources of crops in Israel. Israel Journal of Plant Sciences, 1983,32(2):97-127.
[12] Ahmadi H, Nazarian F . The inheritance and chromosomal location of morphological traits in wild wheat,Triticum turgidum L. ssp. dicoccoides. Euphytica, 2007,158(1/2):103-108.
[13] Millet E, Rong J K, Qualset C O , et al. Production of chromosome-arm substitution lines of wild emmer in common wheat. Euphytica, 2013,190(1):1-17.
[14] Feldman M, Millet E. Methodologies for indentification,allocetion and transer of quantitative genes from wild emmer wheat. Wheat Genet Symp. Beijing: Chinese Agricultural Scientific and Technological Press, 1995: 19-26.
[15] Millet E, Rong J K, Qualset C O , et al. Grain yield and grain protein percentage of common wheatlines with wild emmer chromosome-arm substitutions. Euphytica, 2014,195(1):69-81.
[16] Rong J K, Millet E, Manisterski J , et al. A new powdery mildew resistance gene:Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 2000,115(2):121-126.
[17] Pestsova E G, Andreas B, Marion S R . Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theoretical and Applied Genetics, 2006,112(4):634-647.
[18] Rong J . PPD-B1 of Triticum dicoccoides,the candidate gene of a major QTL responsible for the later heading of common wheat-wild emmer chromosome arm substitution line 2BS. San Diego:The Largest Ag-Genomics Meeting in the Word, 2014: 10-15.
[19] Lopes M S, Reynolds M P, Mcintyre C L , et al. QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico,in the West Asia,North Africa,and South Asia regions. Theoretical and Applied Genetics, 2013,126(4):971-984.
[20] Blanco A, Pasqualone A, Troccoli A , et al. Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Molecular Biology, 2002,48(5/6):615-623.
[21] Groos C, Robert N, Bervas E , et al. Genetic analysis of grain protein-content,grain yield and thousand-kernel weight in bread wheat. Theoretical and Applied Genetics, 2003,106(6):1032-1040.
[22] Perretant M R, Cadalen T, Charmet G , et al. QTL analysis of bread-making quality in wheat using a doubled haploid population. Theoretical and Applied Genetics, 2000,100(8):1167-1175.
[23] Sourdille P, Perretant M R, Charmet G , et al. Detection of QTL for bread-making quality in wheat using molecular markers//Genetics and Breeding for Crop Quality and Resistance. Springer Netherlands, 1999: 361-366.
[24] Bogard M, Allard V, Martre P , et al. Identifying wheat genomic regions for improving grain protein concentration independently of grain yield using multiple inter-related populations. Molecular Breeding, 2012,31(3):587-599.
[25] Dholakia B B, Ammiraju J S S, Singh H, , et al. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breeding, 2010,122(5):392-395.
[26] 李志西, 魏益民, 张建国 . 小麦蛋白质组分与面团特性和烘烤品质关系的研究. 中国粮油学报, 1998,13(3):1-5.
[27] 丁安明, 李君, 崔法 , 等. 小麦关联RIL群体产量性状与品质性状的相关分析. 麦类作物学报, 2011,31(3):480-486.
[28] 蒋进, 蒋云, 王淑荣 . 四川省近年育成小麦品种农艺性状和品质性状分析. 麦类作物学报, 2019,39(6):682-691.
[29] 陈华萍, 魏育明, 郑有良 . 四川省的小麦地方品种品质分析. 植物遗传资源学报, 2006,7(1):89-94.
[1] 杨斌, 闫雪, 温宏伟, 王曙光, 逯腊虎, 范华, 景蕊莲, 孙黛珍. 不同水分条件下小麦持绿表型性状评价及其与产量相关性研究[J]. 作物杂志, 2020, (4): 45–52
[2] 王小明,廖政达,何奕响,孙晓波,韦增林,韦喜,苏喜德. 糖料蔗等价配方施肥农艺及品质性状比较分析[J]. 作物杂志, 2019, (4): 191–195
[3] 张丽丽,赵一洲,李鑫,毛艇,刘研,张战,倪善君,刘福才. 60Co-γ射线辐照对不同粳稻品种后代稻米品质性状变异的影响[J]. 作物杂志, 2018, (3): 51–56
[4] 张彬,李金秀,王震,冯浩,李金榜. 小麦主要农艺性状的相关性及聚类分析[J]. 作物杂志, 2018, (3): 57–60
[5] 唐慧娟,臧巩固,程超华,唐蜻,李育君,赵立宁. 工业大麻产量和品质性状的对应分析[J]. 作物杂志, 2018, (2): 52–55
[6] 耿雷跃,张薇,邹拓,郑振宇,耿立格,孙娟,张启星. 河北水稻地方种质品质多样性分析[J]. 作物杂志, 2018, (1): 49–55
[7] 于纪珍,王瑞,詹鹏杰,平俊爱,张福耀. 中国主要高粱杂交种农艺及品质性状多样性分析[J]. 作物杂志, 2017, (5): 49–54
[8] 程海涛,马兆惠,刘桂林,曹萍,吕文彦. 北方粳稻品种(系)资源淀粉RVA谱特征与品质性状典型相关分析[J]. 作物杂志, 2017, (2): 59–66
[9] 高小丽,廖文华,王姗姗,杨文才,戴相林,张玉红. 豌豆主要农艺和品质性状的相关性及灰色关联度分析[J]. 作物杂志, 2016, (5): 56–60
[10] 赵利,王利民,赵玮,党照,张建平,党占海. 胡麻RIL群体中粗脂肪和脂肪酸组分的分离及其相关性分析[J]. 作物杂志, 2016, (1): 33–37
[11] 段冰,柳青山,梁笃,闫凤霞,郭琦. 饲用高粱品质性状配合力分析[J]. 作物杂志, 2016, (1): 51–55
[12] 杨善, 江永, 周鸿凯, 等. 甘蔗光合因子与品质性状的典型相关性分析[J]. 作物杂志, 2015, (4): 69–73
[13] 徐丁一, 王红武, 刘志芳, 等. 我国玉米骨干自交系秸秆纤维品质分析[J]. 作物杂志, 2012, (1): 39–43
[14] 岳云, 李福, 陈炳东, 等. 盐胁迫对油葵生理生化指标和产量影响的研究[J]. 作物杂志, 2011, (2): 32–35
[15] 肖光顺, 李保成, 谢宗铭, 林海, 李吉莲. 早熟陆地棉主要纤维品质性状的遗传效应及杂种优势研究[J]. 作物杂志, 2010, (6): 62–66
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!