作物杂志,2021, 第3期: 202–209 doi: 10.16035/j.issn.1001-7283.2021.03.031

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

基于TOPSIS黄淮海平原井灌区冬小麦调亏灌溉的多目标优化

秦海霞1(), 张玉顺1, 张昆2, 杨浩晨1, 邱新强1, 王艳平1, 路振广1(), 张明智1   

  1. 1河南省水利科学研究院/河南省节水灌溉工程技术研究中心,450003,河南郑州
    2河南工学院,453003,河南新乡
  • 收稿日期:2020-10-09 修回日期:2021-03-07 出版日期:2021-06-15 发布日期:2021-06-22
  • 通讯作者: 路振广
  • 作者简介:秦海霞,主要研究方向为节水灌溉与水资源,E-mail: qinhaixia@126.com
  • 基金资助:
    河南省重点研发与推广专项(212102110069);河南省水利科技攻关计划项目(GG201509);河南省水利科技攻关计划项目(GG201602);河南省基本科研业务费项目

Multi-Objective Optimization of Regulated Deficit Irrigation for Winter Wheat Based on TOPSIS in Huang-Huai-Hai Plain Well Irrigation Area

Qin Haixia1(), Zhang Yushun1, Zhang Kun2, Yang Haochen1, Qiu Xinqiang1, Wang Yanping1, Lu Zhenguang1(), Zhang Mingzhi1   

  1. 1Henan Provincial Water Conservancy Research Institute/Center of Efficient Irrigation Engineering and Technology Research of Henan Province, Zhengzhou 450003, Henan,China
    2Henan Institute of Technology, Xinxiang 453003, Henan, China
  • Received:2020-10-09 Revised:2021-03-07 Online:2021-06-15 Published:2021-06-22
  • Contact: Lu Zhenguang

摘要:

为探寻黄淮海平原井灌区冬小麦适宜的调亏灌溉控制指标,通过3季(2015-2017年)不同灌水下限与灌水定额(30、60、90、120和180mm)2因素组合试验,研究调亏灌溉对冬小麦产量及作物水分利用效率的影响。灌水下限分别为:轻旱(LD),冬小麦苗期至返青期、拔节期、抽穗期和灌浆成熟期田间持水量分别为田间持水量(field capacity,FC)的50%、55%、60%和50%;中旱(MD),冬小麦苗期至返青期、拔节期、抽穗期和灌浆成熟期田间持水量分别为田间持水量的40%、50%、55%和45%。研究结果表明,随灌水定额的增加,产量呈先增加后下降趋势,水分利用效率呈下降趋势。90mm灌水定额下,随灌水下限的增加,冬小麦产量呈增加趋势。基于CRITIC赋权的TOPSIS法构建冬小麦综合效益多目标优化模型获得的结果与产量和作物水分利用效率分析法获得的结论具有一致性,均表明LD60处理最优。综合考虑,为实现本地区冬小麦稳产与水资源高效利用的双重目标,冬小麦适宜采用轻旱胁迫下灌水定额为60mm的调亏灌溉控制指标。本结论可为黄淮海平原井灌区冬小麦的管理提供科学依据。

关键词: 灌水下限, 灌水定额, 产量, 水分利用效率

Abstract:

To explore the suitable regulated deficit irrigation control index of winter wheat in the well irrigation area of Huang-Huai-Hai Plain, the effects of regulated deficit irrigation on winter wheat yield and crop water use efficiency were studied through three-year (2015-2017) experiments with different irrigation lower limits[light drought (LD), the field capacity(FC) of winter wheat was 50%, 55%, 60%, and 50% at seedling to green stage, jointing stage, heading stage, and grain filling mature stage, respectively; and moderate drought(MD), the field capacity of winter wheat was 40%, 50%, 55%, and 45% at seedling to green stage, jointing stage, heading stage, grain filling mature stage, respectively] and irrigation quota (30, 60, 90, 120, 180mm). The results showed that with the increase of irrigation quota, the yield increased first and then decreased, and the crop water use efficiency decreased. Under the 90mm irrigation quota, the yield of winter wheat increased with the increase of the lower limit of irrigation. The result of constructing a multi-objective optimization model of the comprehensive benefit of winter wheat based on the CRITIC weighted TOPSIS method was consistent with that obtained by comprehensive analysis of yield and water use efficiency, which showed that LD60 treatment was the best. Considering comprehensively, to achieve the dual goals of stable yield and efficient utilization of water resources of winter wheat in this region, the suitable irrigation quota under light drought stress degree of winter wheat was 60mm. This study can provide a scientific basis for the management of winter wheat in the well irrigation area of Huang-Huai-Hai Plain in China.

Key words: Irrigation lower limit, Irrigation quota, Yield, Water use efficiency

表1

试验方案及灌溉定额

处理
Treatment
灌水下限
Lower limit of irrigation (%)
灌水定额
Irrigation
quota (mm)
灌溉定额总量
Irrigation amount (mm)
苗期-返青期
Seedling-returning green stage
拔节期
Jointing stage
抽穗期
Heading stage
灌浆成熟期
Filling stage
2015-
2016
2016-
2017
2017-
2018
CK1 60 65 70 60 90 345 282 600
LD30 50 55 60 50 30 195 296 330
LD60 50 55 60 50 60 285 340 420
LD90 50 55 60 50 90 300 387 420
LD120 50 55 60 50 120 315 446 480
LD180 50 55 60 50 180 435 436 750
MD30 40 50 55 45 30 135 282 255
MD60 40 50 55 45 60 195 278 360
MD90 40 50 55 45 90 165 251 510
MD120 40 50 55 45 120 195 282 540
MD180 40 50 55 45 180 255 413 570
CK2 35 40 45 40 90 165 270 285

表2

不同处理对冬小麦产量构成因素的影响

处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter
(mm)
穗长
Ear length (cm)
小穗数
Spikelet number
无效穗数
Invalid panicle
number
穗粒数
Number of
grains per spike
千粒重
1000-grain
weight (g)
2015
CK1 64.98±4.47abc 4.15±0.04a 8.48±0.88bcd 20.00±1.45bcdef 2.08±1.42a 37.58±9.39bcd 55.59±1.71a
LD30 63.69±5.27bcde 3.87±0.26ab 8.85±0.92b 20.51±1.19ab 2.43±1.65a 39.48±8.68abc 54.85±0.93a
LD60 63.39±3.58cde 4.17±0.41a 9.34±0.97a 20.20±1.64bcd 1.73±1.84a 43.28±10.37a 52.92±4.42a
LD90 62.34±6.61de 4.12±0.24a 8.87±0.91b 19.73±1.15def 2.30±1.90a 37.58±7.52bcd 55.32±0.81a
LD120 65.55±2.78ab 4.15±0.19a 9.34±0.82a 20.93±1.27a 2.05±1.22a 40.33±8.07ab 52.18±0.61a
LD180 66.74±3.19a 3.95±0.30ab 9.31±0.82a 20.43±1.28abc 1.73±1.47a 42.51±6.32a 52.15±1.38a
MD30 58.96±4.78f 3.99±0.11ab 8.36±0.81cde 19.78±1.10cdef 2.03±1.64a 36.93±9.42bcd 31.50±28.76b
MD60 62.06±3.61e 3.97±0.06ab 8.16±0.84de 19.33±1.46fg 1.90±0.90a 35.53±8.33cd 52.30±1.02a
MD90 64.13±4.29bcde 4.35±0.18a 8.59±0.69bc 20.15±1.33bcde 1.75±1.10a 39.68±9.05abc 54.10±0.82a
MD120 64.38±3.73bcd 4.25±0.21a 8.26±0.74cde 18.98±1.39g 1.78±1.07a 35.65±8.57cd 52.63±4.93a
MD180 62.73±4.05de 4.22±0.35a 8.40±0.72cde 19.40±1.28efg 1.98±1.35a 35.45±7.48cd 53.17±4.21a
CK2 59.55±3.94f 3.56±0.13b 8.01±0.93e 18.78±1.79g 2.18±1.13a 33.48±10.01d 54.81±0.65a
W 17.689** 4.627* 35.875** 19.656** 0.520ns 10.217** 1.726ns
I 9.728** 1.309ns 0.990ns 0.778ns 1.090ns 0.349ns 3.579*
W×I 7.257** 0.690ns 4.233** 7.627** 1.241ns 4.192** 4.787**
2016
CK1 63.10±3.78cde 3.65±0.39a 9.19±0.46a 22.20±1.01a 2.95±1.73e 44.00±8.53a 47.26±1.54abc
LD30 63.51±4.41bcde 3.14±0.48d 8.24±0.65cd 20.83±1.72bcd 4.80±1.84b 32.65±9.84cd 47.24±1.60abc
LD60 59.62±5.32f 3.16±0.54d 8.64±0.61bc 21.28±2.04abcd 3.65±1.53de 37.70±10.73bc 48.01±0.92abc
LD90 62.48±5.79cdef 3.39±0.37bcd 8.81±0.86ab 21.13±1.94bcd 4.80±1.91b 33.18±10.16cd 44.40±3.94c
LD120 61.85±3.98def 3.23±0.73cd 8.29±0.90cd 20.40±2.20cd 4.73±1.68bc 30.90±10.09d 45.14±5.29bc
LD180 68.48±5.70a 3.48±0.46abc 9.04±0.85ab 21.78±1.73ab 4.63±2.20bc 35.23±9.53bcd 48.19±0.86ab
MD30 61.69±3.93def 3.31±0.46bcd 8.16±0.88d 21.35±1.87abc 3.93±1.95bcd 34.73±10.36cd 46.14±2.02abc
MD60 60.52±4.22ef 3.19±0.58d 8.09±0.87d 20.30±1.33d 3.89±1.85bcd 33.16±9.50cd 45.22±3.5bc
MD90 66.47±5.46ab 3.17±0.44d 8.89±0.86ab 20.53±1.81cd 3.83±1.52cde 34.10±8.12cd 41.40±3.26d
MD120 65.46±4.94bc 3.52±0.37ab 9.13±0.73a 21.05±2.16bcd 3.20±1.09de 39.63±8.79ab 48.36±0.71a
MD180 63.86±6.67bcd 3.40±0.40bcd 8.88±1.18ab 21.33±1.65abc 4.75±1.84bc 34.23±8.99cd 39.91±2.24d
CK2 56.13±3.24g 2.77±0.28e 6.83±0.77e 18.45±1.64e 6.30±1.34a 19.30±4.84e 46.01±0.80abc
W 6.899** 11.622** 35.548** 15.000** 16.471** 23.821** 11.609**
I 13.210** 3.964** 11.979** 2.759* 3.327* 0.643ns 10.252**
W×I 9.612** 3.542** 7.302** 3.065* 3.734** 5.273** 11.153**
2017
CK1 54.77±5.09abc 3.44±0.26a 8.26±0.75ab 19.50±1.47b 4.15±2.72bc 34.80±8.26a 43.20±4.65cde
LD30 56.64±3.47ab 3.18±0.49abc 7.92±0.53abc 18.30±0.73cd 1.95±1.15d 36.05±4.21ab 45.82±11.6abcd
LD60 55.20±4.07abc 3.19±0.40ab 7.91±0.76abc 19.60±0.99ab 2.95±1.70cd 34.05±8.17ab 46.92±8.30abc
LD90 53.81±3.95bcd 2.79±0.46d 7.84±0.78b 19.15±1.95bc 4.50±2.31b 27.15±8.65cd 49.31±5.64ab
LD120 57.70±3.33a 3.12±0.42bc 8.11±0.74abc 19.60±1.27ab 2.95±1.32cd 35.75±7.71ab 43.33±10.12cde
LD180 54.11±4.92bc 2.88±0.57cd 7.71±0.80bc 18.55±1.57cd 2.75±1.16cd 31.90±9.23bc 50.27±2.84a
MD30 52.08±5.23cd 3.01±0.34bcd 8.05±0.71abc 19.40±0.82bc 2.95±2.09cd 34.75±8.38ab 48.10±3.84abc
MD60 45.51±3.76e 3.11±0.39bc 7.54±0.62c 18.05±0.76d 3.50±1.64bc 22.70±4.79d 37.68±5.45ef
MD90 50.98±4.29d 3.17±0.35abc 7.98±0.81abc 19.25±1.02bc 4.00±1.69bc 30.25±8.72bc 40.10±7.19de
MD120 57.81±3.86a 3.26±0.48ab 8.45±0.79a 20.40±1.31a 3.65±2.98bc 38.10±12.25a 42.99±4.87cde
MD180 46.82±6.91e 3.29±0.44ab 7.86±1.35bc 18.95±1.93bc 4.05±1.18bc 27.42±9.55cd 44.18±2.09bcd
CK2 45.91±4.18e 2.88±0.46cd 7.80±0.64bc 19.42±0.77bc 6.05±2.04a 21.84±6.21d 34.37±3.58f
W 32.079** 8.648** 1.399ns 0.572ns 7.829** 9.289** 11.902**
I 15.271** 1.400ns 2.278ns 6.492** 4.633** 9.496** 2.785*
W×I 5.506** 3.621** 0.981ns 6.456** 1.318ns 5.049** 3.941**

表3

不同处理对冬小麦产量及作物水分利用效率(WUE)的影响

年份Year 处理Treatment 产量Yield (kg/hm2) 耗水量Water consumption (mm) WUE [kg/(hm2·mm)]
2015 CK1 6845.10±1148.91a 400.65±16.94bc 17.03±1.91ab
LD30 5733.35±758.09ab 312.65±12.24e 18.30±1.48ab
LD60 6271.90±591.00ab 368.40±11.01cd 17.01±0.93ab
LD90 5878.35±661.36ab 397.05±10.53bc 14.78±1.15bc
LD120 6647.75±848.88ab 447.35±6.15b 14.88±2.17bc
LD180 6265.60±20.79ab 501.80±20.31a 12.51±0.71cd
MD30 5026.60±261.63b 255.40±11.55f 19.75±2.21a
MD60 5243.30±1211.84ab 293.50±36.78ef 17.77±1.18ab
MD90 5639.15±24.54ab 286.05±16.84ef 19.77±1.45a
MD120 5279.50±699.33ab 301.40±2.99ef 17.50±2.09ab
MD180 5341.30±770.18ab 338.50±15.18de 15.87±3.22abc
CK2 2698.45±231.29c 257.05±16.20f 10.57±1.78d
F-value
W 15.000** 386.851** 10.192**
I 0.364ns 145.853** 3.857*
W×I 0.345ns 28.838** 0.834ns
2016 CK1 6754.67±934.64a 391.08±9.61de 17.04±2.36a
LD30 5010.25±686.63bcd 343.23±3.13ef 14.60±1.97abc
LD60 5879.25±1086.73abcd 363.87±21.12ef 16.13±2.70ab
LD90 5957.75±757.68abcd 448.95±4.23cd 13.26±1.58abcd
LD120 6288.25±575.39abc 480.42±40.49b 13.17±1.70abcd
LD180 6679.75±544.89ab 552.44±3.31a 12.09±0.96bcd
MD30 4652.25±1386.53cde 323.22±25.21f 14.20±3.09abc
MD60 4471.25±1367.49de 327.22±40.83f 13.70±3.55abcd
MD90 4657.75±1226.41cde 369.03±29.95ef 12.82±3.98bcd
MD120 5154.00±1421.23abcd 428.26±51.80d 11.88±1.95cd
MD180 4819.25±850.17cd 495.96±37.82c 9.66±0.99d
CK2 3110.83±827.10e 328.79±21.49f 9.93±2.64d
F-value
W 11.110** 33.176** 5.289**
I 1.137ns 120.119** 3.384*
W×I 0.571ns 2.419ns 0.333ns
2017 CK1 6196.50±431.90a 530.23±53.55a 11.75±0.95bcd
LD30 5136.04±741.39bc 340.78±19.21df 15.02±1.38a
LD60 5275.00±268.94abc 336.68±13.09df 15.68±0.83a
LD90 5516.10±393.04abc 384.63±18.19cd 14.35±0.93ab
LD120 5953.87±122.18ab 427.20±17.24bc 13.95±0.51abc
LD180 5923.50±727.77ab 535.58±47.42a 11.06±0.92cd
MD30 3622.50±511.33d 276.24±50.94g 13.66±4.00abc
MD60 4862.63±753.38c 302.88±53.66fg 16.41±3.42a
MD90 5406.06±271.69abc 464.53±13.33b 11.64±0.38bcd
MD120 5910.50±718.11ab 445.18±59.04b 13.50±2.65abc
MD180 5636.42±795.24abc 574.56±11.69a 9.81±1.34d
CK2 1954.25±428.26e 203.37±17.88h 9.56±1.49d
F-value
W 49.081** 114.679** 3.770*
I 9.968** 122.052** 9.137**
W×I 2.305ns 10.004** 0.868ns

表4

冬小麦产量构成因素、产量及作物水分利用效率综合效益评价

处理
Treatment
2015 2016 2017 2015-2017排名
Ranking of
2015-2017
评价值
Evaluation value
排名
Ranking
评价值
Evaluation value
排名
Ranking
评价值
Evaluation value
排名
Ranking
CK1 0.450 3 0.497 1 0.415 6 2
LD30 0.414 6 0.343 9 0.459 1 6
LD60 0.456 1 0.424 2 0.417 4 1
LD90 0.382 10 0.369 5 0.381 7 8
LD120 0.437 4 0.363 6 0.428 2 3
LD180 0.430 5 0.410 4 0.416 5 4
MD30 0.406 7 0.360 7 0.360 8 8
MD60 0.390 9 0.338 10 0.360 8 10
MD90 0.453 2 0.353 8 0.352 11 7
MD120 0.404 8 0.422 3 0.425 3 4
MD180 0.371 11 0.327 11 0.357 10 11
CK2 0.094 12 0.094 12 0.059 12 12
[1] Li J, Zhang Z, Liu Y , et al. Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain. Agricultural Water Management, 2019,224:105736.
doi: 10.1016/j.agwat.2019.105736
[2] Zhang X, Pei D, Chen S , et al. Performance of double-cropped winter wheat-summer maize under minimum irrigation in the North China Plain. Agronomy Journal, 2006,98(6):1620.
doi: 10.2134/agronj2005.0358
[3] Xing W, Wang W, Shao Q , et al. Estimating net irrigation requirements of winter wheat across Central-Eastern China under present and future climate scenarios. Journal of Irrigation and Drainage Engineering, 2018,144(7):05018005.
doi: 10.1061/(ASCE)IR.1943-4774.0001320
[4] Sun H, Zhang X, Liu X , et al. Impact of different cropping systems and irrigation schedules on evapotranspiration,grain yield and groundwater level in the North China Plain. Agricultural Water Management, 2019,211:202-209.
doi: 10.1016/j.agwat.2018.09.046
[5] Yang X, Chen Y, Pacenka S , et al. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. Journal of Hydrology, 2015,522:428-438.
doi: 10.1016/j.jhydrol.2015.01.010
[6] Vélez-Sánchez J E, Balaguera-López H E, Alvarez-Herrera J G . Effect of regulated deficit irrigation (RDI) on the production and quality of pear Triunfo de Viena variety under tropical conditions. Scientia Horticulturae, 2021,278:109880.
doi: 10.1016/j.scienta.2020.109880
[7] 周晨莉, 张恒嘉, 巴玉春 , 等. 调亏灌溉对膜下滴灌菘蓝生长发育和产量的影响. 水土保持学报, 2020,34(4):193-200.
[8] 沈甜, 黄小晶, 牛锐敏 , 等. 不同灌水量对贺兰山东麓葡萄生长和品质的影响. 灌溉排水学报, 2020,39(10):65-74.
[9] Du T, Kang S, Sun J , et al. An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China. Agricultural Water Management, 2010,97(1):66-74.
doi: 10.1016/j.agwat.2009.08.011
[10] 张凯, 刘战东, 强小嫚 , 等. 耕作方式和灌水处理对冬小麦-夏玉米水分利用及产量的影响. 农业工程学报, 2019,35(17):102-109.
[11] 周丽丽, 薛彬, 孟范玉 , 等. 喷灌定额和灌水频次对冬小麦产量及品质的影响分析. 农业机械学报, 2018,49(1):235-243.
[12] Liu X, Shao L, Sun H , et al. Responses of yield and water use efficiency to irrigation amount decided by pan evaporation for winter wheat. Agricultural Water Management, 2013,129:173-180.
doi: 10.1016/j.agwat.2013.08.002
[13] 李红峥, 曹红霞, 郭莉杰 , 等. 沟灌方式和灌水量对温室番茄综合品质与产量的影响. 中国农业科学, 2016,49(21):4179-4191.
[14] 吴宣毅, 曹红霞, 王虎兵 , 等. 不同种植行距和灌水量对中国西北地区日光温室短季节栽培番茄品质的交互影响. 中国农业科学, 2018,51(5):940-951.
[15] 李波, 邢经伟, 姚名泽 , 等. 深埋秸秆量和滴灌量对温室番茄品质、产量及IWUE的影响. 沈阳农业大学学报, 2019,50(1):51-59.
[16] 秦海霞, 张玉顺, 邱新强 , 等. 灌水定额对夏玉米生长及产量的影响. 中国农村水利水电, 2019(4):62-68.
[17] 郝琨, 费良军, 刘小刚 , 等. 香蕉树中度荫蔽下充分灌水提高干热区咖啡产量及品质. 农业工程学报, 2019,35(12):72-80.
[18] 文博, 魏微, 王杰才 , 等. 环境绩效评估中多种赋权方法的对比分析. 环境保护科学, 2020,46(1):41-46.
[19] 陈亮亮, 马亮, 赵经华 . 变异系数权重TOPSIS法在节水灌溉方案评价中的应用. 水资源与水工程学报, 2010,21(1):95-96.
[20] 叶霜, 李承荧, 邱霞 , 等. 基于组合赋权的TOPSIS模型在果实品质评价中的应用. 西北农林科技大学学报(自然科学版), 2017,45(10):111-121.
[21] 张明智, 牛文全, 路振广 , 等. 微润灌对作物产量及水分利用效率的影响. 中国生态农业学报, 2017,25(11):1671-1683.
[22] 陈凯丽, 赵经华, 付秋萍 , 等. 不同水氮处理对滴灌冬小麦生长、产量和耗水特性的影响. 干旱地区农业研究, 2018,36(4):125-132.
[23] Yang H, Liu H, Zheng J , et al. Effects of regulated deficit irrigation on yield and water productivity of chili pepper (Capsicum annuum L.) in the arid environment of Northwest China. Irrigation Science, 2018,36(1):61-74.
doi: 10.1007/s00271-017-0566-4
[24] Koksal E S, Tasan M, Artik C , et al. Evaluation of financial efficiency of drip-irrigation of red pepper based on evapotranspiration calculated using an iterative soil water-budget approach. Scientia Horticulturae, 2017,226:398-405.
doi: 10.1016/j.scienta.2017.08.025
[25] Wang J, Huang G, Li J , et al. Effect of soil moisture-based furrow irrigation scheduling on melon (Cucumis melo L.) yield and quality in an arid region of Northwest China. Agricultural Water Management, 2017,179:167-176.
doi: 10.1016/j.agwat.2016.04.023
[26] Wang Y, Zhang Y, Zhang R , et al. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain. Science of the Total Environment, 2018,618:112-120.
doi: 10.1016/j.scitotenv.2017.10.284
[27] Golzardi F, Baghdadi A, Afshar R K . Alternate furrow irrigation affects yield and water-use efficiency of maize under deficit irrigation. Crop and Pasture Science, 2017,68(8):726.
doi: 10.1071/CP17178
[28] Agbna G, She D, Liu Z , et al. Effects of deficit irrigation and biochar addition on the growth,yield,and quality of tomato. Scientia Horticulturae, 2017,222:90-101.
doi: 10.1016/j.scienta.2017.05.004
[29] Greaves G E, Wang Y . Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment. Agricultural Water Management, 2017,188:115-125.
doi: 10.1016/j.agwat.2017.04.008
[30] Kang S, Shi W, Zhang J . An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Research, 2000,67(3):207-214.
doi: 10.1016/S0378-4290(00)00095-2
[31] 向友珍 . 滴灌施肥条件下温室甜椒水氮耦合效应研究. 杨凌: 西北农林科技大学, 2017.
[32] 宁东贤, 闫翠萍, 赵玉坤 , 等. 不同花生品种农艺、经济和品质性状TOPSIS方法评价. 山西农业科学, 2018,46(12):1986-1989.
[33] Wang H, Wang X, Bi L , et al. Multi-objective optimization of water and fertilizer management for potato production in sandy areas of northern China based on TOPSIS. Field Crops Research, 2019,240:55-68.
doi: 10.1016/j.fcr.2019.06.005
[1] 潘高峰, 汪本福, 陈波, 房振兵, 赵沙沙, 田永宏. 播期对鄂中北地区不同类型粳稻产量、生育期及温光利用的影响[J]. 作物杂志, 2021, (4): 105–111
[2] 高杰, 封广才, 李晓荣, 李青风, 汪灿, 张国兵, 周棱波, 彭秋. 施氮量对酒用糯高粱品种红缨子产量及氮素吸收利用的影响[J]. 作物杂志, 2021, (4): 118–122
[3] 佟天一, 蔡健旋, 张集胜, 李林, 马林, 何柔静, 唐湘如. 香稻专用肥料类型对香稻产量、品质和香气的影响[J]. 作物杂志, 2021, (4): 152–158
[4] 王庆彬, 聂振田, 卢洁春, 彭春娥, 张民, 孟慧, 刘治国, 耿全政. 宛氏拟青霉提取物对夏玉米产量及氮素利用的影响[J]. 作物杂志, 2021, (4): 166–171
[5] 吴可, 谢慧敏, 刘文奇, 莫并茂, 韦国良, 陆献, 李壮林, 邓森霞, 韦善清, 梁和, 江立庚. 氮、磷、钾肥对南方双季稻区水稻产量及产量构成因子的影响[J]. 作物杂志, 2021, (4): 178–183
[6] 王智华, 张凌云, 魏立兴. 不同小黑麦品种在冬闲盐碱耕地的比较试验[J]. 作物杂志, 2021, (4): 191–195
[7] 刘天昊, 张翼飞, 王怀鹏, 杨克军, 张津松, 孙逸珊, 肖珊珊, 徐荣琼, 杜嘉瑞, 李佳宇, 彭程, 王宝生. 叶面喷施硅肥对寒地玉米干物质积累分配及产量品质的调控效应[J]. 作物杂志, 2021, (4): 112–117
[8] 刘学彤, 郑春莲, 曹薇, 党红凯, 曹彩云, 李晓爽, 李科江, 马俊永. 长期定位施肥对土壤有机质、不同形态氮含量及作物产量的影响[J]. 作物杂志, 2021, (4): 130–135
[9] 梁茜, 吴清山, 葛均筑, 吴锡冬, 杨永安, 侯海鹏, 张垚, 马志琪. 播期对华北平原雨养夏玉米产量形成与资源利用效率的影响[J]. 作物杂志, 2021, (4): 136–143
[10] 赵宝平, 刘景辉, 任长忠. 燕麦产量形成生理机制研究进展[J]. 作物杂志, 2021, (3): 1–7
[11] 武志峰, 刘凯丽, 乐丽红, 陈忠平, 唐双勤, 李祖军, 韩瑞才, 曾研华, 曾勇军, 潘晓华, 石庆华, 吴自明. 化控措施对直播晚稻抽穗扬花期低温胁迫的缓解效应[J]. 作物杂志, 2021, (3): 114–119
[12] 张杰, 陈鑫, 高芳芳, 马亚君, 刘燕燕, 武才女. 增施生物有机肥对红芸豆产量和品质的影响[J]. 作物杂志, 2021, (3): 161–166
[13] 孟祥宇, 冉成, 刘宝龙, 赵哲萱, 白晶晶, 耿艳秋. 秸秆还田配施氮肥对东北黑土稻区土壤养分及水稻产量的影响[J]. 作物杂志, 2021, (3): 167–172
[14] 赵轩微, 赵雅杰, 田振东, 胡树平, 赵榕, 任亚宁, 包海柱, 高聚林. 向日葵干物质转运及产量对播种期和栽培密度的响应[J]. 作物杂志, 2021, (3): 185–189
[15] 楚光红, 章建新, 王聪, 赵占营. 幼苗期不同节位摘心对高产春大豆根系生长和产量的影响[J]. 作物杂志, 2021, (3): 195–201
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!