作物杂志,2022, 第3期: 134–142 doi: 10.16035/j.issn.1001-7283.2022.03.019

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

超甜玉米果皮柔嫩度与成分含量动态变化及相互关系

顾银山1,3(), 张士龙2,3, 贾海涛3, 李小琴2, 贺正华3, 焦春海3, 田小海1, 黄益勤3(), 危文亮1()   

  1. 1长江大学农学院,434025,湖北荆州
    2华南农业大学/亚热带农业生物资源保护与利用国家重点实验室,510642,广东广州
    3湖北省农业科学院粮食作物研究所/粮食作物种质创新与品种改良湖北省重点实验室,430064,湖北武汉
  • 收稿日期:2021-08-28 修回日期:2021-11-10 出版日期:2022-06-15 发布日期:2022-06-20
  • 通讯作者: 黄益勤,危文亮
  • 作者简介:顾银山,主要从事玉米资源创新研究,E-mail: 1280443809@qq.com
  • 基金资助:
    亚热带农业生物资源保护与利用国家实验室开放课题(SKL-CUSAb-2013-03);粮食作物种质创新与遗传改良省重点实验室开放课题(2018lzjj07);湖北省农业科学院青年基金项目(2021NKYJJ03)

Dynamic Variation and Correlation of Pericarp Tenderness and Component Contents of Super Sweet Corn

Gu Yinshan1,3(), Zhang Shilong2,3, Jia Haitao3, Li Xiaoqin2, He Zhenghua3, Jiao Chunhai3, Tian Xiaohai1, Huang Yiqin3(), Wei Wenliang1()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2South China Agricultural University/State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, Guangzhou 510642, Guangdong, China
    3Institute of Food Crops, Hubei Academy of Agriculture Sciences/Hubei Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain Crops, Wuhan 430064, Hubei, China
  • Received:2021-08-28 Revised:2021-11-10 Online:2022-06-15 Published:2022-06-20
  • Contact: Huang Yiqin,Wei Wenliang

摘要:

以10份生育期一致、果皮柔嫩度存在梯度差异的超甜玉米自交系为材料,探讨果皮柔嫩度和果皮主要成分在籽粒发育过程中的动态变化及其相互关系。结果表明,在湖北武汉和海南陵水2种不同环境下,果皮柔嫩度好、中、差的3份自交系PE10、T105、S33205在授粉后第12~24天内,果皮柔嫩度值(打孔读数)均呈由小到大的曲线变化,且各测定时间点的柔嫩度均值均为S33205>T105>PE10;环境条件影响果皮柔嫩度变化速率。在2种环境下的测定时间段内,3份自交系果皮半纤维素含量均逐渐增大,木质素含量呈现单峰曲线变化,而纤维素含量始终在24%上下波动,果胶与灰分含量变化不大,且没有明显的规律,主要成分含量均值始终为半纤维素>纤维素>木质素。无论是在籽粒发育过程中,还是在最适采收期,果皮半纤维素和木质素含量均与果皮柔嫩度呈极显著正相关,是影响果皮柔嫩度的化学成分因子。

关键词: 超甜玉米, 果皮柔嫩度, 成分含量, 动态变化, 相互关系

Abstract:

Ten inbred lines of super sweet corn with similar growth time and gradient difference in pericarp tenderness were used to study the dynamic change of pericarp tenderness and main constituents and their interrelationship in kernel development in order to understand the influence of the content variation of the main ingredients on pulp tenderness. The results showed that PE10 (best tenderness), T105 (medial tenderness), and S33205 (worst tenderness) of the 10 materials exhibited a curvilinear increase in pericarp tenderness score (puncture reading) from 12 to 24d after pollination in Spring (Wuhan, Hubei) and Winter (Lingshui, Hainan) in 2014. In addition, the mean values of the pericarp tenderness scores at each time point showed the same descending order of S33205, T105 and PE10. The change rate of pericarp tenderness was affected by the environment. The variation in hemicellulose content in the pericarp of three inbred lines showed the gradual increase from small to large during the test, the lignin content varied along a single peak curve, the cellulose content varied by 24% throughout, and the pectin and ash contents changed little and irregular. The average levels of the major constituents of the pericarp were all in descending order of hemicellulose, cellulose, lignin over the test period. Either in the course of grain development or at the most appropriate time of harvest, the levels of hemicellulose and lignin all correlated significantly with pericarp tenderness, which were chemical factors affecting pericarp tenderness.

Key words: Super sweet corn, Pericarp tenderness, Component content, Dynamic variation, Correlation

表1

果皮柔嫩度方差分析

变异来源
Source of variance
df SS MS F F0.05 F0.01
材料间
Between materials
9 16784.05 1864.89 416.81** 2.12 2.89
环境间
Between environments
1 2.38 2.38 0.53 4.08 7.31
材料×环境
Material × environment
9 26.34 2.93 0.65 2.12 2.89
误差Error 40 178.97 4.47
总变异Total variance 59 16991.74

表2

10份超甜玉米自交系最适采收期果皮柔嫩度均值多重比较

材料Material 果皮柔嫩度Pericarp tenderness (g/mm2)
S33205 158.03±0.71aA
S33247 152.31±1.59bB
HZ508 137.99±2.46cC
S13084 137.20±1.71cdC
S23207 134.91±2.88deDC
T105 132.45±0.86eD
S33222 128.55±2.07fE
S23288 123.92±3.12gF
S13237 107.05±2.01hG
PE10 101.33±1.56iH

图1

2种环境条件下PE10、T105和S33205果皮柔嫩度动态变化

图2

2种环境条件下PE10(a)、T105(b)和S33205(c)果皮柔嫩度动态变化比较

图3

PE10果皮主要成分含量动态变化

图4

T105果皮主要成分含量动态变化

图5

S33205果皮主要成分含量动态变化

表3

果皮成分含量在不同环境条件下的变化比较

材料
Material
果皮成分
Pericarp component
环境
Environment
主要成分含量Component content
12d 14d 16d 18d 20d 22d 24d
PE10 纤维素 S 23.82±0.38a 24.43±0.59a 25.59±0.84a 25.23±0.82a 26.40±1.23a 24.53±1.37a 23.37±2.25a
W 24.38±1.24a 25.92±0.65a 23.84±1.01a 23.62±0.83a 24.53±1.45a 25.48±1.13a 25.25±1.00a
半纤维素 S 20.16±0.95a 22.86±0.88a 37.78±1.06aA 40.45±1.95aA 43.21±1.05a 45.64±0.82aA 47.35±1.38a
W 17.35±1.00a 19.34±0.91a 32.16±1.85bB 35.18±1.42bB 38.94±0.69b 40.11±1.16bB 45.28±1.11a
果胶 S 1.18±1.14a 3.49±0.65a 2.49±0.59a 2.14±0.30a 2.48±0.50a 1.72±0.82a 2.19±0.43a
W 3.23±0.80a 2.89±1.03a 1.28±0.75a 2.13±0.98a 3.65±0.79a 2.73±0.95a 2.98±1.12a
木质素 S 6.03±0.53a 6.91±0.53a 6.95±0.55a 8.40±0.97aA 10.85±0.60aA 8.14±0.97a 8.15±0.77a
W 4.82±0.65a 5.09±0.98a 5.35±1.66a 5.42±0.53bB 8.45±1.22bB 8.37±0.80a 7.04±1.28a
灰分 S 1.09±0.31a 2.20±0.28a 1.83±0.64a 2.00±0.38a 1.96±0.40a 2.03±0.18a 1.14±0.34a
W 1.55±0.46a 1.13±0.26a 1.60±1.11a 1.57±0.40a 1.43±0.51a 1.64±0.61a 1.47±0.50a
T105 纤维素 S 23.38±1.10a 23.15±0.98a 24.17±1.12a 23.31±1.88a 23.08±1.26a 24.43±1.53a 23.65±1.35a
W 23.84±0.89a 24.71±1.79a 23.77±1.53a 22.86±1.96a 24.62±1.16a 25.02±2.31a 24.06±1.18a
半纤维素 S 37.97±1.29a 40.61±1.63a 46.02±1.03a 48.83±1.64aA 52.05±1.50aA 51.20±1.05a 53.78±0.88a
W 36.54±1.42a 37.85±1.65a 42.61±0.83b 43.68±1.42bB 46.27±1.38bB 48.59±0.57b 49.17±1.10a
果胶 S 2.06±0.35a 2.05±0.10a 1.84±0.37a 1.95±0.27a 2.40±0.46a 1.83±0.33a 2.01±0.30a
W 1.88±0.63a 1.94±0.80a 2.45±0.76a 2.01±0.87a 1.02±0.36a 1.71±0.44a 2.52±0.43a
木质素 S 7.56±0.74a 8.08±0.55a 8.18±0.45a 10.81±0.95aA 10.99±0.57a 10.32±0.66a 10.43±1.01a
W 6.92±0.69a 7.02±0.96a 7.24±1.03a 8.51±1.10bB 9.63±1.67b 10.71±1.05a 9.43±0.90a
灰分 S 1.96±0.41a 2.05±0.29a 1.91±0.24a 2.09±0.26a 1.63±0.34a 2.10±0.21a 2.26±0.35a
W 1.85±0.59a 1.97±0.56a 1.80±0.71a 1.79±0.55a 1.85±0.49a 2.07±0.30a 1.89±0.44a
S33205 纤维素 S 24.10±1.48a 24.57±1.24a 25.06±0.89a 24.66±0.63a 25.37±0.85a 23.78±0.81a 24.56±0.66a
W 23.48±1.04a 24.38±0.62a 25.06±1.14a 24.66±1.97a 25.37±1.62a 23.78±1.18a 24.56±1.28a
半纤维素 S 39.22±1.06a 41.91±0.92a 43.68±1.10a 45.80±1.00a 48.26±1.08a 51.67±1.10a 52.33±1.53a
W 38.62±1.22a 38.71±0.77b 43.01±0.36a 44.88±0.95a 47.77±1.29a 50.04±1.37a 51.68±1.52a
果胶 S 3.12±0.68a 3.50±0.60a 3.55±0.42a 4.35±0.57a 3.01±0.80a 3.60±0.43a 3.04±0.38a
W 3.15±1.07a 2.09±0.97b 3.04±0.36a 3.56±0.91a 2.05±0.47a 3.02±1.24a 3.45±0.53a
木质素 S 9.06±0.44a 9.28±0.60a 9.48±0.50a 11.99±1.01aA 11.79±0.71a 10.52±0.48a 10.33±0.52a
W 8.27±1.06a 9.02±1.40a 9.25±1.27a 9.77±1.83bB 11.58±1.32a 11.82±0.73a 9.83±1.31a
灰分 S 1.88±0.43a 2.08±0.34a 2.46±0.43a 2.72±0.43a 2.97±0.36a 2.92±0.33a 2.88±0.22a
W 2.71±0.43a 1.94±0.31a 2.35±0.50a 2.66±0.25a 2.87±0.51a 2.43±0.54a 2.66±0.40a

表4

同一材料在2个环境中籽粒发育过程中果皮成分含量与柔嫩度的相关系数

果皮成分
Pericarp component
果皮柔嫩度Pericarp tenderness
PE10 T105 S33205
2014年春季
Spring in 2014
2014年冬季
Winter in 2014
2014年春季
Spring in 2014
2014年冬季
Winter in 2014
2014年春季
Spring in 2014
2014年冬季
Winter in 2014
纤维素Cellulose 0.08 0.24 0.22 0.20 0.15 0.22
半纤维素Hemicellulose 0.96** 0.94** 0.91** 0.87** 0.98** 0.97**
果胶Pectin -0.09 0.15 0.16 0.15 -0.21 0.22
木质素Lignin 0.71** 0.74** 0.72** 0.75** 0.72** 0.77**
灰分Ash 0.04 0.23 0.16 0.20 0.23 0.22

表5

最适采收期不同材料果皮柔嫩度与成分含量相关系数

果皮成分
Pericarp component
果皮柔嫩度Pericarp tenderness
2014年春季
Spring 2014
2014年秋季
Winter 2014
纤维素Cellulose 0.13 0.09
半纤维素Hemicellulose 0.92** 0.90**
果胶Pectin 0.04 0.12
木质素Lignin 0.70** 0.72**
灰分Ash 0.11 0.20
[1] 李坤, 李高科, 肖颖, 等. 甜玉米品质遗传改良研究进展. 广东农业科学, 2020, 47(11):70-77.
[2] 史振声, 姚晓云, 朱敏. 鲜食玉米果皮特性与适口性差异研究. 玉米科学, 2013, 21(1):79-84.
[3] 乐素菊, 张璧, 刘厚诚, 等. 超甜玉米籽粒果皮厚度及灌浆特性研究. 华南农业大学学报, 2003(3):13-15.
[4] Azanza F, Klein B P, Juvik J A. Sensory characterization of sweet corn lines differing inphysical and chemical composition. Journal of Food Science, 1996, 61(1):253-257.
doi: 10.1111/j.1365-2621.1996.tb14772.x
[5] 姚晓云, 史振声. 鲜食玉米果皮厚度研究进展. 种子, 2013, 32(5):49-50.
[6] 赵捷, 王美兴, 赵蕖, 等. 甜玉米果皮细胞层数、纤维素含量与果皮柔嫩性的关系. 浙江农业科学, 2018, 59(9):1658-1662.
[7] Tracy F, Galinat W C. Thickness and cell layer number of the pericarp of sweet corn and some of its relatives. Horticultural Science, 1987, 22(4):645-647.
[8] 周淑梅, 李小琴, 孙秀东. 甜玉米子粒果皮厚度变化规律的研究. 作物杂志, 2008(1):17-20.
[9] Daniel L, Bajtay I, Gulyásné I. Quality breeding in sweet corn. Aeta Forticulturae, 1987, 220:143-146.
[10] 陈利容, 张正, 王旭清, 等. 鲜食糯玉米采后果皮和胚乳细胞变化与柔嫩度关系研究. 山东农业科学, 2013, 45(9):104-106.
[11] Zhu M, Li M, Li F H, et al. Correlation between the lignin content and mechanical properties of waxy corn pericarp. Scientia Horticulturae, 2014, 179:266-270.
doi: 10.1016/j.scienta.2014.09.040
[12] 乐素菊, 肖德兴, 刘鹏飞, 等. 超甜玉米果皮结构与籽粒柔嫩性的关系. 作物学报, 2011, 37(11):2111-2116.
[13] 王世恒, 冯凤琴, 徐仁政. 超甜玉米营养品质分析. 玉米科学, 2004, 12(1):61-62.
[14] 乐素菊, 刘厚诚, 张璧, 等. 超甜玉米籽粒乳熟期碳水化合物变化及食用品质. 华南农业大学学报(自然科学版), 2003, 24(2):9-11.
[15] 戴惠学, 胡俏强, 陈舜权. 甜玉米果皮研究进展概述. 上海农业学报, 2012, 28(4):156-159.
[16] Keegstra K. Plant cell walls. Plant Physiology, 2010, 154:483-486.
doi: 10.1104/pp.110.161240 pmid: 20921169
[17] Willberg-Keyrilainen P, Ropponen J. Evaluation of esterification routes for long chain cellulose esters. Heliyon, 2019, 5(11):e02898.
doi: 10.1016/j.heliyon.2019.e02898
[18] Xu N, Zhang W, Ren S, et al. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnol Biofuels, 2012, 5(1):58.
doi: 10.1186/1754-6834-5-58
[19] Laureano-Perez L, Teymouri F, Alizadeh H, et al. Understanding factors that limit enzymatic hydrolysis of biomass. Applied Biochemistry and Biotechnology, 2005, 124:1081-1099.
doi: 10.1385/ABAB:124:1-3:1081
[20] Zhang W, Yi Z L, Huang J F, et al. Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresource Technology, 2013, 130:30-37.
doi: 10.1016/j.biortech.2012.12.029 pmid: 23298647
[21] Ralph J, Lundquist K, Brunow G, et al. Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochemistry Review, 2004, 3(1/2):29-40.
doi: 10.1023/B:PHYT.0000047809.65444.a4
[22] Grabber J H. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Science, 2005, 45(3):820-831.
doi: 10.2135/cropsci2004.0191
[23] Turner S R, Somerville C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell, 1997, 9(5):689-701.
pmid: 9165747
[24] Kokubo A, Kuraishi S, Sakurai N. Culm strength of barley correlation among maximum bending stress, cell wall dimensions, and cellulose content. Plant Physiology, 1989, 91(3):876-882.
doi: 10.1104/pp.91.3.876 pmid: 16667151
[25] Kokubo A, Sakurai N, Kuraishi S, et al. Culm brittleness of barley mutants is caused by smaller number of cellulose molecules in cell wall. Plant Physiology, 1991, 97(2):509-514.
doi: 10.1104/pp.97.2.509 pmid: 16668428
[26] Teri A,Hale, Richard L, et al. Penetrometer and taste panel perception of pericarp tenderness in su, se, and sh 2 sweet corn at three maturities. Hori Technology, 2004, 14(4):521-524.
[27] 张士龙, 潘登, 王青峰, 等. 果实硬度计评定鲜食玉米果皮柔嫩度的可行性. 作物杂志, 2012(3):62-65.
[28] Peng L, Hocart C H, Redmond J W, et al. Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta, 2000, 211(3):406-414.
pmid: 10987560
[29] Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass. Technical Report, 2008, 510:42618.
[30] 崔彦宏, 周海, 李伯航. 甜玉米籽粒的营养品质及影响因素. 河北农业大学学报, 1996, 19(4):99-104.
[31] 刘萍. 中国鲜食甜、糯玉米品种试验产量与品质评价体系的建设. 扬州:扬州大学, 2007.
[1] 李波,宫亮,曲航,金丹丹,孙文涛. 辽河三角洲稻区施氮水平对水稻生长发育及产量的影响[J]. 作物杂志, 2020, (1): 173–178
[2] 孙悦,刘斌,傅漫琪,王婧,王小慧,陈阜. 1985-2015年我国胡麻子生产时空动态变化[J]. 作物杂志, 2019, (6): 8–13
[3] 张士龙, 潘登, 王青峰, 王国华, 杨瑞春, 黄君, 李小琴. 果实硬度计评定鲜食玉米果皮柔嫩度的可行性[J]. 作物杂志, 2012, (3): 62–65
[4] 张丰转, 金正勋, 马国辉, 等. 水稻抗倒性与茎秆形态性状和化学成分含量间相关分析[J]. 作物杂志, 2010, (4): 15–19
[5] 欧阳主才, 陈家来, 方青, 等. 国审超甜玉米华宝甜1号的特征特性与高效栽培关键技术[J]. 作物杂志, 2008, (2): 93–94
[6] 赵仁贵, 王逸群, 蔚荣海, 等. 甜玉米新品种吉甜6号的特征特性及栽培技术[J]. 作物杂志, 2007, (1): 50–51
[7] 姚坚强, 朱金庆, 鲁长根, 等. 超甜玉米浙凤甜2号优质丰产栽培技术[J]. 作物杂志, 2005, (6): 68–68
[8] 赫忠友, 赫晋. “都市丽人”加甜糯鲜食专用玉米杂交种的选育[J]. 作物杂志, 2004, (5): 52–53
[9] 张振平, 张悦, 谷铁实, 姜征宇, 李丹. 超甜玉米新品种绿色先锋的选育及栽培技术要点[J]. 作物杂志, 2004, (3): 53–53
[10] 程伟东, 谢太理, 覃兰秋, 等. 超甜玉米杂交新品种“玉美头803”的选育[J]. 作物杂志, 2003, (2): 48–49
[11] 张发春, 赵庆云, 彭凤梅, 等. 云南高原山药玉米立体高效栽培研究初报[J]. 作物杂志, 2001, (6): 30–30
[12] 刘翠花, 王庆祥, 胡书银. 藏东南特用玉米栽培研究[J]. 作物杂志, 2000, (6): 14–16
[13] 宋同明. 发展多元化生态保护型和餐桌特用型玉米[J]. 作物杂志, 2000, (4): 1–2
[14] 李建生, 徐尚忠, 熊秀珠, 等. 超甜玉米新品种金银99的主要特性和栽培技术[J]. 作物杂志, 2000, (3): 26–27
[15] 张福成, 王瑞莲, 韩凤英. 优质高产玉米新品种巴单3号的选育[J]. 作物杂志, 1999, (2): 36–36
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!