作物杂志,2022, 第4期: 146–153 doi: 10.16035/j.issn.1001-7283.2022.04.020

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

基于能值改进模型的红米与烤烟作物系统可持续性评价——以贵州省盘州市为例

孙凯1(), 梁龙1(), 李仲佰2   

  1. 1贵州财经大学管理科学与工程学院,550025,贵州贵阳
    2盘州市农业农村局,553537,贵州盘州
  • 收稿日期:2021-12-07 修回日期:2021-12-26 出版日期:2022-08-15 发布日期:2022-08-22
  • 通讯作者: 梁龙
  • 作者简介:孙凯,主要研究方向为农村发展,E-mail: 1563828792@qq.com
  • 基金资助:
    贵州省科技厅科技计划项目“构建碳足迹大数据推动贵州特色农业全产业链绿色发展研究”(黔科合基础(2020)1Z057);2021年贵州财经大学在校研究生科研项目(2020ZXSY59)

Sustainability Evaluation of the Red Rice and Flue-Cured Tobacco Crop System Based on the Improved Emergy Model——A Case Study of Panzhou City, Guizhou Province

Sun Kai1(), Liang Long1(), Li Zhongbai2   

  1. 1College of Management Science and Engineering, Guizhou University of Finance and Economics, Guiyang 550025, Guizhou, China
    2Bureau of Agriculture and Rural Affairs of Panzhou City, Panzhou 553537, Guizhou, China
  • Received:2021-12-07 Revised:2021-12-26 Online:2022-08-15 Published:2022-08-22
  • Contact: Liang Long

摘要:

为准确测度农作物生产的可持续发展水平,进一步提高可持续发展能力。将碳排放与碳固定视为农田系统环境产出,纳入能值分析框架,建立能值改进指标,评价区域红米和烤烟2种不同作物生产模式的可持续性并进行灵敏性测试。研究发现,红米和烤烟系统的能值投入分别是1.26E+17sej/hm2和1.24E+17sej/hm2,产品能值产出分别是2.61E+16sej/hm2和6.55E+15sej/hm2,红米生产模式的产品产出效率较好。在环境能值产出方面,红米系统表现为净温室气体排放“源”,碳排放(5.97E+16sej/hm2)远大于碳固定(1.30E+15sej/hm2),减排潜力较大;而烤烟系统则表现为碳固定盈余,碳排放(1.95E+14sej/hm2)小于碳固定(3.42E+14sej/hm2)。温室气体排放量变化对作物系统环境负载率和可持续发展水平的影响最大。结论表明,在传统能值分析体系中增设碳排放与碳固定指标可为农业系统可持续性评价提供更加全面的测算思路和方法借鉴。

关键词: 环境产出, 能值改进指标, 红米系统, 烤烟系统, 可持续性评价

Abstract:

The goal of this study is to measure the sustainable development level of crop production, and to further improve the capacity of sustainable development. In the emergy analysis framework, carbon emission and carbon sequestration were considered as environmental outputs of the farmland system, and the emergy improvement index was created to evaluate the sustainability of two different crop production modes of red rice and flue-cured tobacco, as well as test its sensitivity. It was found that the emergy input of red rice and flue-cured tobacco system were 1.26E+17sej/ha and 1.24E+17sej/ha, respectively, and the product emergy output were 2.61E+16sej/ha and 6.55E+15sej/ha, respectively. The production pattern of red rice was better than flue-cured tobacco in the system product output efficiency. In terms of the environmental emergy output, the red rice system was source of net greenhouse gas emissions, it’s carbon emissions (5.97E+16sej/ha) were much more than carbon sequestration (1.30E+15sej/ha). There was great potential for emission reduction. The flue-cured tobacco system showed the carbon sequestration surplus, it’s carbon emissions (1.95E+14sej/ha) was less than carbon sequestration (3.42E+14sej/ha). The changes of greenhouse gas emissions had the greatest impact on the environmental load rate and sustainable development level of crop systems. This study showed that the addition of carbon emission and carbon sequestration indexes in the traditional emergy analysis system could provide more comprehensive calculation ideas and methods for the sustainability evaluation of agricultural production system.

Key words: Environmental output, Emergy improvement indexes, Red rice system, Flue-cured tobacco system, Sustainability evaluation

表1

新民镇2种典型作物种植面积及分布情况

项目
Item
粮食作物系统
Grain crop system
经济作物系统
Cash crop system
作物Crop 红米 烤烟
全生育周期Full growth cycle 5-9月 5-9月
种植面积Planting area (hm2) 866.7 354.5

表2

各投入要素的温室气体排放系数

项目Item 碳排放系数
Emission coefficient
参考文献
Reference
劳动力Human labor (d) 0.86 [32]
柴油Diesel fuel (L) 3.75 [33]
氮肥Nitrogen fertilizer (kg) 7.76 [34]
磷肥Phosphorus fertilizer (kg) 2.33 [34]
钾肥Potassium fertilizer (kg) 0.66 [34]
有机肥Organic fertilizer (kg) 0.23 [35]
农膜Plastic film (kg) 0.10 [35]
农药Pesticide (kg) 18.00 [36]

表3

2种典型农作系统的原始数据及能值结果

项目
Item
能值转化率
Unit emergy value
(sej/unit)
原始数据Raw data 能值Emergy value
红米
Red rice
烤烟
Flue-cured tobacco
红米
Red rice
烤烟
Flue-cured tobacco
能值投入
Emergy inputs
(sej/hm2)
可更新自然资源 1.12E+17 1.12E+17
太阳能 1.00E+00 1.54E+13 1.54E+13 1.54E+13 1.54E+13
风能 1.86E+03 1.55E+08 1.55E+08 2.89E+11 2.89E+11
雨水化学能 2.35E+04 4.76E+12 4.76E+12 1.12E+17 1.12E+17
不可更新自然资源 2.20E+15 2.20E+15
表土损失能 7.94E+04 2.77E+10 2.77E+10 2.20E+15 2.20E+15
不可更新工业辅助能量 2.08E+14 1.80E+15
氮肥 4.83E+09 1.27E+05 6.14E+14
磷肥 4.96E+09 1.27E+05 6.31E+14
钾肥 1.40E+09 1.27E+05 1.78E+14
柴油 8.41E+04 2.48E+09 4.09E+09 2.08E+14 3.44E+14
农药 2.06E+09 1.20E+02 5.70E+02 2.47E+11 1.17E+12
农膜 4.83E+08 7.50E+04 3.62E+13
可更新生物有机能 1.12E+16 8.33E+15
劳动力 5.73E+06 9.83E+08 1.42E+09 5.63E+15 8.12E+15
种子 2.60E+04 2.15E+11 7.34E+09 5.59E+15 1.91E+14
有机肥 3.44E+06 5.25E+05 4.13E+06 1.81E+12 1.42E+13
总投入 1.26E+17 1.24E+17
能值产出
Emergy outputs
(sej/hm2)
农产品 1.08E+11 3.27E+10 2.61E+16 6.55E+15
碳排放 5.09E+07 1.17E+09 3.83E+06 5.97E+16 1.95E+14
碳固定 5.09E+07 2.56E+07 6.72E+06 1.30E+15 3.42E+14

图1

2种典型农作系统的能值投入结构

表4

2种典型农作系统的能值评价指标

项目
Item
红米
Red rice
烤烟
Flue-cured tobacco
传统能值评价指标
EMA index
EYR 2.28 0.65
ELR 0.02 0.03
ESI 116.84 19.43
能值改进评价指标
E-EMA index
EYR 2.28 0.66
ELR 0.49 0.03
EESI 4.63 19.87

表5

2种典型农作系统环境产出变化及能值指标波动

项目Item 红米Red rice 烤烟Flue-cured tobacco
EYS ELR EESI EYS ELR EESI
增加200% Increase 200% 碳排放Carbon emission 98.18% ↑ 49.54% ↓ 2.20% ↓ 1.20% ↑ 3.35% ↓
碳固定Carbon sequestration 2.14% ↓ 2.18% ↑ 5.11% ↑ 5.11% ↑
减少50% Reduction 50% 碳排放Carbon emission 49.09% ↓ 96.42% ↑ 1.46% ↑ 1.46% ↑
碳固定Carbon sequestration 1.07% ↑ 1.06% ↓ 2.20% ↓ 0.60% ↑ 2.78% ↓

图2

红米系统环境产出增(减)后的灵敏性系数

图3

烤烟系统环境产出增(减)后的灵敏性系数

[1] 张洁瑕, 陈佑启, 郝晋珉, 等. 乡村振兴战略框架下的区域农业生态系统研究进展. 中国农业大学学报, 2021, 26(5):92-105.
[2] 王小龙, 刘星星, 隋鹏, 等. 能值方法在农业系统应用中的常见问题及其纠正思路探讨. 中国生态农业学报(中英文), 2020, 28(4):503-512.
[3] Xu Q, Yang Y, Hu K L, et al. Economic,environmental,and emergy analysis of China's green tea production. Sustainable Production and Consumption, 2021, 28(10):269-280.
doi: 10.1016/j.spc.2021.04.019
[4] 焦士兴, 崔思静, 王安周, 等. 基于能值理论的河南省农业生态系统评价. 地域研究与开发, 2021, 40(2):135-139.
[5] 宋丹, 李丁, 王岳光, 等. 京津保农业生态系统的能值分析. 江苏农业科学, 2017, 45(4):231-235.
[6] 马世昌, 吴晓磊. 安徽省农业生态经济系统能值分析. 中国农业资源与区划, 2019, 40(12):101-107.
[7] Hau J L, Bakshi B R. Promise and problems of emergy analysis. Ecological Modelling, 2004, 178(2):215-225.
doi: 10.1016/j.ecolmodel.2003.12.016
[8] Wang Q S, Xiao H, Ma Q, et al. Review of emergy analysis and life cycle assessment:Coupling development perspective. Sustainability, 2020, 12(1):367-380.
doi: 10.3390/su12010367
[9] 王一超, 赵桂慎, 彭澎, 等. 基于能值与生命周期评价耦合模型的农业系统生态效率评估——以北京市郊区为例. 农业环境科学学报, 2018, 37(6):1311-1320.
[10] Patterson M, Mcdonald G, Hardy D. Is there more in common than we think? Convergence of ecological footprinting,emergy analysis,life cycle assessment and other methods of environmental accounting. Ecological Modelling, 2017, 362(24):19-36.
doi: 10.1016/j.ecolmodel.2017.07.022
[11] Wang X L, Wang W, Guan Y S, et al. A joint use of emergy evaluation,carbon footprint and economic analysis for sustainability assessment of grain system in China during 2000-2015. Journal of Integrative Agriculture, 2018, 17(12):2822-2835.
doi: 10.1016/S2095-3119(18)61928-8
[12] Su Y, He S, Wang K, et al. Quantifying the sustainability of three types of agricultural production in China:An emergy analysis with the integration of environmental pollution. Journal of Cleaner Production, 2019, 252(10):119650.
doi: 10.1016/j.jclepro.2019.119650
[13] Fan J L, Brian G M C, Henry H J, et al. Emergy and energy analysis as an integrative indicator of sustainability:A case study in semi-arid Canadian farmlands. Journal of Cleaner Production, 2018, 172(1):428-437.
doi: 10.1016/j.jclepro.2017.10.200
[14] 方一平, 朱冉. “两山”价值转化的经济地理思维:从逻辑框架到西南实证. 经济地理, 2021, 41(10):192-199.
[15] Wang Q S, Ma Z, Ma Q, et al. Comprehensive evaluation and optimization of agricultural system:An emergy approach. Ecological Indicators, 2019, 107(12):105650-105658.
doi: 10.1016/j.ecolind.2019.105650
[16] Wang Q S, Zhang Y, Tian S, et al. Evaluation and optimization of a circular economy model integrating planting and breeding based on the coupling of emergy analysis and life cycle assessment. Environmental Science and Pollution Research, 2021, 1(7):1-14.
[17] 陈起伟, 熊康宁, 兰安军. 基于GIS技术的贵州省土壤侵蚀危险性评价. 长江科学院院报, 2020, 37(12):47-52,66.
[18] 刘彦伶, 李渝, 张萌, 等. 基于文献计量的贵州喀斯特地区石漠化等级土壤养分状况分析. 中国土壤与肥料, 2019(2):171-180.
[19] 蓝盛芳, 钦佩, 陆宏芳. 生态经济系统能值分析. 北京: 化学工业出版社, 2002.
[20] Odum H T. Environmental Accounting:Emergy and Environmental Decision Making. New York: Wiley, 1996.
[21] Boody G, Vondracek B, Andow D A, et al. Multifunctional agriculture in the United States. Biological Science, 2005, 55(1):27-38.
[22] Brown M T, Ulgiati S. Assessing the global environmental sources driving the geobiosphere:A revised emergy baseline. Ecological Modelling, 2016, 339(10):126-132.
doi: 10.1016/j.ecolmodel.2016.03.017
[23] 陈阜. 农业生态学. 北京: 中国农业大学出版社, 2009.
[24] Watanabe M D B, Ortega E. Dynamic emergy accounting of water and carbon ecosystem services:A model to simulate the impacts of land-use change. Ecological Modelling, 2014, 271(10):113-131.
doi: 10.1016/j.ecolmodel.2013.03.006
[25] Liang L, Ridoutt B G, Wang L, et al. China’s tea industry:Net greenhouse gas emissions and mitigation potential. Agriculture, 2021, 11(4):363-381.
doi: 10.3390/agriculture11040363
[26] 王孝忠. 我国蔬菜生产的环境代价、减排潜力与调控途径. 北京: 中国农业大学, 2018.
[27] IPCC. Climate change 2014:mitigation of climate change. contribution of working group III to the Fifth Assessment Report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2014.
[28] 夏龙龙, 颜晓元. 中国粮食作物生命周期生产过程温室气体排放的研究进展及展望. 农业环境科学学报, 2020, 39(4):665-672.
[29] Zhang B, Chen B. Sustainability accounting of a household biogas project based on emergy. Applied Energy, 2017, 194(15):819-831.
doi: 10.1016/j.apenergy.2016.05.141
[30] 赵桂慎, 李彩恋, 彭澎, 等. 生态敏感区有机板栗生态补偿标准及其估算——以北京市密云水库库区为例. 中国农业资源与区划, 2016, 37(6):50-56.
[31] 白义鑫, 盛茂银, 胡琪娟, 等. 贵州喀斯特农田生态系统碳足迹时空差异研究. 四川农业大学学报, 2019, 37(5):685-694.
[32] 刘巽浩, 徐文修, 李增嘉, 等. 农田生态系统碳足迹法:误区、改进与应用——兼析中国集约农作碳效率. 中国农业资源与区划, 2013, 34(6):1-11.
[33] Liu Y, Langer V, Høgh-Jensen H, et al. Life cycle assessment of fossil energy use and greenhouse gas emissions in Chinese pear production. Journal of Cleaner Production, 2010, 18(14):1423-1430.
doi: 10.1016/j.jclepro.2010.05.025
[34] 陈舜, 逯非, 王效科. 中国氮磷钾肥制造温室气体排放系数的估算. 生态学报, 2015, 35(19):6371-6383.
[35] 张芬, 程泰鸿, 陈新平, 等. 我国典型露地蔬菜生产中的温室气体排放. 环境科学, 2020, 41(7):3410-3417.
[36] Liang L, Ridoutt B. G, Wu W, et al. A multi-indicator assessment of peri-urban agricultural production in Beijing,China. Ecological Indicators, 2019, 97(2):350-362.
doi: 10.1016/j.ecolind.2018.10.040
[37] Wang Y Y, Cai Y P, Liu G Y, et al. Evaluation of sustainable crop production from an ecological perspective based emergy analysis:A case of China's provinces. Journal of Cleaner Production, 2021, 313(2):127912.
doi: 10.1016/j.jclepro.2021.127912
[38] 姜秋香, 赵蚰竹, 王子龙, 等. 基于系统动力学的黑龙江省农业生态系统能值分析. 应用基础与工程科学学报, 2019, 27(4):780-793.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!