作物杂志,2023, 第2期: 229–237 doi: 10.16035/j.issn.1001-7283.2023.02.033

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

基于农户调查的长江流域双季稻生产碳、氮足迹分析——以江西和湖南为例

陈中督(), 徐春春, 纪龙, 方福平()   

  1. 中国水稻研究所,311300,浙江杭州
  • 收稿日期:2022-11-18 修回日期:2022-12-28 出版日期:2023-04-15 发布日期:2023-04-11
  • 通讯作者: 方福平,研究方向为水稻产业经济和生态研究,E-mail:fangfuping@caas.cn
  • 作者简介:陈中督,研究方向为低碳稻作农作制,E-mail:chenzhongdu@caas.cn
  • 基金资助:
    浙江省自然科学基金青年基金(LQ21C130002)

Carbon and Nitrogen Footprints of Double Rice Production in Yangtze River Based on Farm Survey Data——A Case Study of Jiangxi and Hunan

Chen Zhongdu(), Xu Chunchun, Ji Long, Fang Fuping()   

  1. China National Rice Research Institute, Hangzhou 311300, Zhejiang, China
  • Received:2022-11-18 Revised:2022-12-28 Online:2023-04-15 Published:2023-04-11

摘要:

量化分析作物生产碳、氮足迹可以有效帮助减少农业温室气体和活性氮排放。基于足迹理论和方法,采用问卷调查方式定量研究长江流域水稻生产碳足迹和氮足迹大小及组成。研究表明,水稻单位产量碳足迹和氮足迹分别介于0.50~0.90kgCO2-eq/kg和5.20~13.17gN-eq/kg,其中CH4和NH3排放为主要贡献因子。种植规模与碳足迹和氮足迹呈现显著负相关关系,与一般农户(低于0.7hm2)水稻种植相比,种粮大户(高于3.3hm2)碳足迹和氮足迹分别降低了33.8%和44.1%。在调研的稻田中发现,53.1%的地块肥料投入过量,54.9%的地块灌溉投入过量,且产量较低,存在着较大的节能减排潜力。提高农户的受教育水平和低碳绿色农业认知能够显著降低水稻生产碳、氮足迹。因此,发展双季稻节肥节水技术,提高农业机械运行效率,构建规模化农作种植模式,同时提升农户知识文化水平和加强低碳绿色农业知识的普及力度以及不同类型适应性行为的指导,健全低碳绿色农业技术创新与推广机制,有利于缓解中国长江流域双季稻种植区的气候变化和富营养化污染。

关键词: 碳足迹, 氮足迹, 双季稻, 生态评价, 生命周期

Abstract:

Quantifying the carbon footprint (CF) and nitrogen footprint (NF) of crop production can help identify key options to mitigate greenhouse gas and reactive nitrogen emissions from agriculture. Based on farmer's production survey data, the CF and NF of rice production in the Yangtze River were estimated. The results showed the CF and NF per unit yield for rice production in Yangtze River were 0.50-0.90kgCO2-eq/kg and 5.20-13.17gN-eq/kg, respectively. The largest fraction of CF and NF of rice was the share of CH4 emission and NH3 volatilization, respectively. The scale of planting was negatively correlated with the CF and NF, and a decrease in the CF and NF were found in large sized farms (more than 3.3ha) by 33.8% and 44.1%, respectively, compared to smaller ones lower than 0.7ha. 53.1% of a field exposed to excessive fertilizer and 54.9% of a field exposed to excessive irrigation showed low yields. Improving farmers' education level and awareness of low-carbon and green agriculture could significantly reduce the CF and NF of rice production. Thus, developing technology that limits water and fertilizer consumption, as well as developing in farm machinery operation efficiencies and large scaled farms, strengthen the popularization of knowledge and culture level of farmers and low carbon green agriculture knowledge and guidance of different types of adaptive behavior; improve the innovation and promotion mechanism of low carbon green agriculture technology would be favorable toward mitigating climate change and eutrophication of double rice production in Yangtze River.

Key words: Key words Carbon footprint, Nitrogen footprint, Double rice cropping, Ecological assessment, Life cycle assessment

图1

系统边界

表1

农业投入资料的温室气体和活性氮排放系数

项目
Item
碳排放系数
Carbon emission
coefficient
氮排放系数
Nitrogen emission
coefficient
柴油Diesel 0.89kgCO2-eq/kg 0.56gN-eq/kg
柴油燃烧Diesel combustion 4.10kgCO2-eq/kg 4.10gN-eq/kg
灌溉用电
Electricity for irrigation
0.82kgCO2-eq/kW?h
0.76N-eq/kW?h
氮肥N fertilizer 1.53kgCO2-eq/kg 0.47gN-eq/kg
磷肥P2O5 1.63kgCO2-eq/kg 0.36gN-eq/kg
钾肥K2O 0.65kgCO2-eq/kg 0.03gN-eq/kg
农膜Flim 22.72kgCO2-eq/kg 12.02gN-eq/kg
杀虫剂Insecticides 16.61kgCO2-eq/kg 3.55gN-eq/kg
除草剂Herbicides 10.15kgCO2-eq/kg 4.49gN-eq/kg
杀菌剂Fungicides 10.57kgCO2-eq/kg 7.05gN-eq/kg
水稻种子Rice seed 1.84kgCO2-eq/kg 0.76gN-eq/kg

图2

长江流域双季稻生产碳足迹和氮足迹

图3

长江流域双季稻生产碳足迹和氮足迹构成

表2

长江流域双季稻生产间接碳排放和氮排放特征

种类Item 碳排放Carbon emission (kgCO2-eq/hm2) 氮排放Nr emission (gN-eq/hm2)
早稻
Early rice
晚稻
Late rice
双季稻
Double rice
早稻
Early rice
晚稻
Late rice
双季稻
Double rice
柴油Diesel 635.9±157.9 608.8±147.6 1244.7±279.6 607.8±151.0 582.0±141.1 1189.8±267.3
氮肥N 383.4±82.6 423.5±97.0 806.9±165.1 77.0±16.6 85.1±19.5 162.1±33.2
磷肥P2O5 39.5±19.4 53.9±29.4 93.5±44.4 21.7±10.6 29.6±31.8 51.3±35.6
钾肥K2O 66.2±28.0 72.1±28.6 138.2±52.2 3.0±1.3 3.3±1.3 6.3±2.4
灌溉Irrigation 21.5±13.4 29.4±16.2 50.8±27.6 19.9±12.4 27.2±15.0 47.1±25.6
农膜Film 164.4±33.1 164.4±33.1 87.0±17.5 87.0±17.5
种子Rice seed 115.5±57.9 85.7±47.7 201.1±86.3 47.7±23.9 35.4±19.7 83.1±35.6
除草剂Herbicides 2.0±0.8 3.5±2.1 5.4±2.2 0.9±0.4 1.5±0.9 2.4±1.0
杀虫剂Insecticides 8.1±3.7 11.4±6.7 19.5±8.2 1.7±0.8 2.4±1.4 4.2±1.7
杀菌剂Fungicides 8.6±3.9 8.1±3.9 16.6±7.0 5.7±2.6 5.4±2.6 11.1±4.7
总体Total 1445.0±201.2 1296.2±207.8 2741.2±379.6 872.9±160.8 771.8±157.3 1644.3±291.7

表3

长江流域水稻不同种植规模碳足迹和氮足迹

项目
Item
种植规模Cropping scope
种粮大户
Large-scale grain planter (23)
家庭农场
Family farm (13)
一般农户
General farmer (40)
碳足迹Carbon footprint (kgCO2-eq/kg) 0.53±0.03c 0.62±0.05b 0.80±0.10a
氮足迹Nitrogen footprint (gN-eq/kg) 6.73±1.53c 9.67±1.11b 12.04±1.13a

图4

水稻产量与灌溉量和氮肥投入量的关系

表4

基于回归模型的系数估计和边际效应分析

解释变量
Explaining variable
碳足迹Carbon footprint 氮足迹Nitrogen footprint
回归系数
Coefficient of estimate
边际效应
Marginal effect
回归系数
Coefficient of estimate
边际效应
Marginal effect
性别Gender 0.115(0.058) 0.018(0.009) 0.216(0.108) 0.033(0.017)
年龄Age 0.061(0.031)* 0.009(0.005)* 0.044(0.022)** 0.007(0.003)**
教育Education -0.330(-0.165)* -0.063(-0.032)** -0.345(-0.173)* -0.066(-0.033)*
耕作年限Experience -0.052(-0.026) -0.008(-0.004) -0.033(-0.017) -0.005(-0.003)
耕作面积Farm size -0.053(-0.027)* -0.008(-0.004)* -0.067(-0.034)* -0.010(-0.005)*
气候变化认知Climate change awareness -0.040(-0.020) -0.006(-0.003) -0.058(-0.029) -0.009(-0.005)
低碳绿色认知Low carbon awareness -0.336(-0.168)* -0.053(-0.027)** -0.412(-0.206)* -0.065(-0.033)*
风险规避意识Risk aversion -0.182(-0.091) -0.028(-0.014) -1.303(-0.652) -0.201(-0.101)
农业收入比例Farm income ratio 0.162(0.081) 0.026(0.013) 0.173(0.087) 0.027(0.014)
机械拥有量Machinery ownership -0.173(-0.087)* -0.028(-0.014)* -0.048(-0.024)* -0.008(-0.004)*
土壤肥力状况Soil fertility deficiency -0.229(-0.115)* -0.038(-0.019)** -0.121(-0.061)* -0.020(-0.011)*
灌溉条件Sufficient water irrigation -0.220(-0.110)*** -0.037(-0.018)** -0.145(-0.073)** -0.024(-0.012)**
信贷途径Credit access 0.113(0.057) 0.019(0.010) 0.159(0.080) 0.027(0.014)
技术支持Technical support -0.350(-0.175)*** -0.061(-0.031)** -0.341(-0.171)*** -0.060(-0.031)***
[1] Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013:The Physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA, 2013.
[2] 方恺. 足迹家族:概念、类型、理论框架与整合模式. 生态学报, 2015, 35(6):1-17.
[3] WRI. The greenhouse gas protocol initiative:the foundation for sound and sustainable climate strategies. World Resources Institute and World Business Council for Sustainable Development, 2009.
[4] Pierer M, Winiwarter W, Leach A M, et al. The nitrogen footprint of food products and general consumption patterns in Austria. Food Policy, 2014, 49(1):128-136.
doi: 10.1016/j.foodpol.2014.07.004
[5] Linquist B, Groenigen K J V, Adviento-Borbe M A, et al. An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology, 2015, 18(1):194-209.
doi: 10.1111/j.1365-2486.2011.02502.x
[6] Gao B, Ju X T, Zhang Q, et al. New estimates of direct N2O emissions from Chinese croplands from 1980 to 2007 using localized emission factors. Biogeosciences,2011, 8(10):3011- 3024.
doi: 10.5194/bg-8-3011-2011
[7] Xu X, Lan Y. Spatial and temporal patterns of carbon footprints of grain crops in China. Journal of Cleaner Production, 2017, 146 (10):218-227.
doi: 10.1016/j.jclepro.2016.11.181
[8] 米松华, 黄祖辉, 朱奇彪, 等. 农户低碳减排技术采纳行为研究. 浙江农业学报, 2014, 26(3):797-804.
[9] 刘乃栋, 胡浩, 胡中应, 等. 江苏省水稻生产的碳排放结构特征和影响因素研究——基于农户生产投入和规模的视角. 安徽农业科学, 2014, 42(13):4121-4124.
[10] IPCC. 2006 IPCC guidelines for national greenhouse gas inventories programme (Hayama,Kanagawa). Japan,2006.
[11] 肖玉. 中国稻田生态系统服务功能及其经济价值研究. 北京: 中国科学院地理科学与资源研究所, 2005.
[12] 薛建福. 耕作措施对南方双季稻田碳、氮效应的影响. 北京: 中国农业大学, 2015.
[13] Xue J F, Pu C, Liu S L, et al. Carbon and nitrogen footprint of double rice production in southern China. Ecological Indicators, 2016, 64:249-257.
doi: 10.1016/j.ecolind.2016.01.001
[14] ISO 14044. Environmental management-life cycle assessment- requirements and guidelines. International Organization for Standardization, 2006.
[15] Guinée J B, Gorrée M, Heijungs R, et al. Life cycle assessment: an operational guide to the ISO Standards. Kluwer Academic Publishers,Dordrecht,The Netherlands, 2002.
[16] Cheng K, Pan G X, Smith P, et al. Carbon footprint of China's crop production-an estimation using agro statistics data over 1993-2007. Agriculture Ecosystems Environment, 2011, 142:231-237.
doi: 10.1016/j.agee.2011.05.012
[17] Xue X B, Landis A E. Eutrophication potential of food consumption patterns. Environmental Science and Technology. 2010, 44(16):6450-6456.
doi: 10.1021/es9034478 pmid: 20704246
[18] Leip A, Weiss F, Lesschen J P, et al. The nitrogen footprint of food products in the European Union. Journal of Agricultural Science and Technology, 2014, 152:20-33.
[19] Wang C, Zhou W, Li Z Z, et al. Effects of different nitrogen application rates on ammonia volatilization from paddy fields under double-harvest rice system. Plant nutrition and fertilizer Science, 2012, 18(2):349-358.
[20] Sutton M A, Oenema O, Erisman J W, et al. Too much of a good thing. Nature, 2011, 472(7342):159-161.
doi: 10.1038/472159a
[21] Chen Z, Fu C, Zhang H, et al. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the Southern China. Environmental Science and Pollution Research, 2016, 23(24):24781-24795.
doi: 10.1007/s11356-016-7455-x
[22] Feng S, Tan S, Zhang A, et al. Effect of household land management on cropland topsoil organic carbon storage at plot scale in a red earth soil area of South China. Journal of Agricultural Science, 2011, 149:557-566.
pmid: 22505775
[1] 潘俊峰, 刘彦卓, 梁开明, 黄农荣, 彭碧琳, 傅友强, 胡香玉, 钟旭华, 李妹娟, 胡锐. 长期和短期减施磷肥对华南双季稻产量与磷肥利用的影响[J]. 作物杂志, 2022, (5): 241–248
[2] 苏雨婷, 袁帅, 李永松, 崔璨, 陈平平, 王晓玉, 易镇邪. 氮肥运筹对湘南双季杂交稻产量与抗倒伏特性的影响[J]. 作物杂志, 2022, (3): 225–232
[3] 何宇轩, 李雅娟, 周明卓, 眭锋, 吕伟生, 张俊, 曾勇军, 黄山. 秸秆全量还田下施用过氧化钙对南方双季稻产量和稻田温室气体排放的影响[J]. 作物杂志, 2022, (1): 116–123
[4] 唐刚, 廖萍, 眭锋, 吕伟生, 张俊, 曾勇军, 黄山. 秸秆全量还田下晚稻季翻耕对双季稻田温室气体排放和产量的影响[J]. 作物杂志, 2021, (6): 101–107
[5] 张俊, 邓达孙, 刘建军, 周文喜, 黄欠如, 张卫建. 江南双季稻区再生稻秸秆全量还田机械化种植模式[J]. 作物杂志, 2021, (4): 212–216
[6] 易镇邪, 王元元, 谷子寒, 帅泽宇, 屠乃美, 陈平平. 镉污染稻区油菜–中稻替代双季稻种植的可行性研究[J]. 作物杂志, 2021, (3): 65–69
[7] 刘萍, 邵彩虹, 张红林, 刘光荣. 基于季节性降雨的双季稻生育后期干湿交替灌溉对稻谷产量及品质的影响[J]. 作物杂志, 2021, (2): 153–159
[8] 龚松玲, 曹培, 高珍珍, 李成伟, 刘章勇, 朱波. 种植模式对南方作物产量及资源利用效率的影响[J]. 作物杂志, 2021, (1): 68–73
[9] 杨志长,沈涛,罗卓,彭芝,胡宇倩,资涛,熊廷浩,宋海星. 低氮密植对机插双季稻产量形成和氮肥利用率的影响[J]. 作物杂志, 2020, (2): 71–81
[10] 刘巽浩. 建议推广十项多熟高产技术[J]. 作物杂志, 1996, (1): 2–3
[11] 汪履端. 48-2系列杂交组合的性状分析[J]. 作物杂志, 1995, (5): 7–8
[12] 易维希. 吨粮田开发与高产优质高效农业——浅析湖南省吨粮田开发的成效和前景[J]. 作物杂志, 1993, (2): 5–8
[13] . 马建猷先生80寿辰座谈会在内江召开[J]. 作物杂志, 1992, (3): 33–33
[14] 刘巽浩. 我国耕作制度发展展望[J]. 作物杂志, 1992, (2): 5–7
[15] 易维希. 湖南吨粮田开发效益的浅析[J]. 作物杂志, 1991, (4): 1–4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!