Crops ›› 2018, Vol. 34 ›› Issue (6): 89-95.doi: 10.16035/j.issn.1001-7283.2018.06.014

Previous Articles     Next Articles

Field Study on Variety Difference of Cadmium Accumulation in Sunflower (Helianthus annuus L.)

Jiao Yuzi1,Guo Junmei2,Yang Junxing2,Li Houen3,Xu Tiebing4,Ye Yong5,Zhou Xiaoyong5   

  1. 1 Key Laboratory for Monitor and Remediation of Heavy Metal Polluted Soils of Henan Province, Jiyuan 459000, Henan, China
    2 Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3 Beijing Engineering Research Center of Environmental Geotechnology, Beijing 100038, China
    4 Heibei Provincial Academy of Environmental Sciences, Shijiazhuang 050051, Hebei, China
    5 Beijing Remediation Environmental Restoration Co., Ltd., Beijing 100015, China
  • Received:2018-04-11 Revised:2018-08-28 Online:2018-12-15 Published:2018-12-06

Abstract:

A field experiment was carried out to study the variety difference of growth response and Cd accumulation in 28 cultivars of sunflower (Helianthus annuus L.) in typical Cd-contaminated farmland soil with 2.22mg/kg Cd in Northern China, which aimed to screen sunflower cultivars with high accumulation of Cd. The results showed that significant differences were observed among 28 cultivars of sunflower, with the shoot biomasses ranged from 1 101.38kg/hm 2-12 511.13kg/hm 2, the shoot Cd concentrations ranged from 1.68mg/kg-19.25mg/kg, the bioconcentration factor ranged from 0.76-8.67, and the uptake amount of Cd ranged from 4.17g/hm 2-114.20g/hm 2.According to the cluster analysis of Cd concentration in sunflower, 28 cultivars of sunflower were divided into 3 categories in which the G3, G1, Y1, G8, G12, G4 and G6 cultivars were defined as high accumulation capacity cultivars. The analysis of Cd uptake in shoot of sunflower suggested that Y3, G24 and G3 cultivars could accumulated more than 100g/hm 2 Cd in shoot, which were suitable for applying in phytoremediation of Cd-contaminated soil.

Key words: Cadmium, Sunflower, Cultivar, Phytoremediation

Fig.1

The shoot biomass of different sunflower varieties"

Table 1

The shoot Cd content of different sunflower varieties mg/kg"

生育期Growth stage 观赏葵Ornamental sunflower 油葵Oil sunflower
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 Y1 Y2 Y3 Y4
现蕾期
Squaring stage
5.58 6.76 6.31 3.49 2.20 4.11 4.30 3.72 3.96 3.72 1.15 6.13 3.76 2.49 4.01 3.28 6.29 2.54 1.86 3.15 3.05 5.34 1.35 2.19 3.25 3.85 4.13 4.61
成熟期
Maturation stage
17.96 10.50 19.25 13.95 12.35 13.82 11.17 15.18 10.75 9.37 9.14 14.46 12.48 9.51 9.19 8.62 9.47 6.10 6.22 10.39 8.22 9.82 1.69 8.80 15.71 8.88 11.82 12.53

Fig.2

The Cd bioconcentration factor of different sunflower varieties"

Fig.3

Cluster analysis of Cd accumulation capacity of different sunflower varieties"

Fig.4

Cd extraction amount in aboveground parts of different sunflower varieties"

[1] Lai H Y, Su S W, Guo H Y , et al. Heavy metals contaminated soils and phytoremediation strategies in Taiwan. Soil Contamination, 2011,6:107-126.
[2] Guo J, Lei M, Yang J , et al. Effect of fertilizers on the Cd uptake of two sedum species (Sedum spectabile Boreau and Sedum aizoon L.) as potential Cd accumulators. Ecological Engineering, 2017,106:409-414.
doi: 10.1016/j.ecoleng.2017.04.069
[3] Khan A G, Kuek C, Chaudhry T M , et al. Role of plants,mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 2000,41(1-2):197-207.
doi: 10.1016/S0045-6535(99)00412-9 pmid: 10819202
[4] Mcgrath S P, Lombi E, Gray C W , et al. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 2006,141(1):115-125.
doi: 10.1016/j.envpol.2005.08.022 pmid: 16202493
[5] Ghosh M, Singh S P . A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution, 2005,133(2):365-371.
doi: 10.1016/j.envpol.2004.05.015 pmid: 15519467
[6] Sheng X, Sun L, Huang Z , et al. Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria:implications for energy plant biomass production and phytoremediation. Journal of Environmental Management, 2012,103:58-64.
doi: 10.1016/j.jenvman.2012.02.030 pmid: 22459071
[7] Meers E, Ruttens A, Hopgood M , et al. Potential of Brassic rapa,Cannabis sativa,Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere, 2005,61(4):561-572.
doi: 10.1016/j.chemosphere.2005.02.026 pmid: 16202810
[8] 张晗芝 . 蓖麻对中低度镉污染农田的修复机理研究. 北京:中国科学院大学, 2014.
[9] Riva G, Calzoni J . Standardisation of vegetable oils. Italian Journal of Agronomy, 2004,8(1):9-15.
[10] Adesodun J K, Atayese M O, Agbaje T A , et al. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water, Air & Soil Pollution, 2010,207(1-4):195-201.
doi: 10.1007/s11270-009-0128-3
[11] Madejón P, Murillo J M, Marañón T , et al. Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill. Science of the Total Environment, 2003,307(1-3):239-257.
doi: 10.1016/S0048-9697(02)00609-5 pmid: 12711438
[12] Lin J, Jiang W, Liu D C . Accumulation of copper by roots,hypocotyls,cotyledons and leaves of sunflower (Helianthus annuus L.). Bioresource Technology, 2003,86(2):151-155.
doi: 10.1016/S0960-8524(02)00152-9 pmid: 12653280
[13] Stoica P, Viberg M . Variability in cadmium and zinc shoot concentration in 14 cultivars of sunflower (Helianthus annuus L.) as related to metal uptake and partitioning. Environmental & Experimental Botany, 2015,109(12):45-53.
doi: 10.1016/j.envexpbot.2014.07.020
[14] 赵岩, 黄运新, 秦云 , 等. 植物修复土壤重金属污染的研究进展. 湖北林业科技, 2016,45(1):40-43.
[15] 刘戈宇, 柴团耀, 孙涛 . 超富集植物遏蓝菜对重金属吸收、运输和累积的机制. 生物工程学报, 2010,26(5):561-568.
[16] Yang X, Long X, Ye H , et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant & Soil, 2004,259(1-2):181-189.
[17] Jiang J P, Wu L H, Na L , et al. Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. European Journal of Soil Biology, 2010,46(1):18-26.
doi: 10.1016/j.ejsobi.2009.10.001
[18] 郭智 . 超富集植物龙葵(Solanum nigrum L.)对镉胁迫的生理响应机制研究. 上海:上海交通大学, 2009.
[19] Liu W, Shu W, Lan C . Viola baoshanensis,a plant that hyperaccumulates cadmium. Chinese Science Bulletin, 2004,49(1):29-32.
doi: 10.1007/BF02901739
[20] Sun Y, Zhou Q, Wang L , et al. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous Materials, 2009,161(2-3):808-814.
doi: 10.1016/j.jhazmat.2008.04.030 pmid: 18513866
[21] Keller C, Hammer D . Alternatives for Phytoextraction:Biomass Plants versus Hyperaccumulators. Geophysical Research Abstracts, 7(03285), 2005.
[22] 聂发辉 . 关于超富集植物的新理解. 生态环境学报, 2005,14(1):136-138.
doi: 10.3969/j.issn.1674-5906.2005.01.029
[23] Linger P, Müssig J, Fischer H , et al. Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil:fibre quality and phytoremediation potential. Industrial Crops & Products, 2002,16(1):33-42.
doi: 10.1016/S0926-6690(02)00005-5
[24] Bonanno G, Cirelli G L, Toscano A , et al. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands:Potential applications in agriculture and forestry?. Science of the Total Environment, 2013,452(5):349-354.
doi: 10.1016/j.scitotenv.2013.02.048 pmid: 23534998
[25] Huang H G, Ning Y, Wang L J , et al. The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresource Technology, 2011,102(23):11034-11038.
doi: 10.1016/j.biortech.2011.09.067 pmid: 21993327
[26] 余海波, 宋静, 骆永明 , 等. 典型重金属污染农田能源植物示范种植研究. 环境监测管理与技术, 2011,23(3):71-76.
[27] 丁传雨, 郑远, 任学敏 , 等. 能源植物修复土壤镉污染过程中细菌群落分析. 环境科学学报, 2016,36(8):3009-3016.
doi: 10.13671/j.hjkxxb.2015.0729
[28] 李思亮, 李娜, 徐礼生 , 等. 不同生境下锌镉在伴矿景天不同叶龄叶中的富集与分布特征. 土壤, 2010,42(32):153446-153452.
[29] 张奕斌 . 东南景天根系分泌物组成和特性研究. 杭州:浙江大学. 2014.
[30] 唐皓 . 水稻镉高积累材料镉积累及耐性特征研究. 成都:四川农业大学, 2016.
[31] 林立金, 马倩倩, 石军 , 等. 花卉植物硫华菊的镉积累特性研究. 水土保持学报, 2016,30(3):141-146.
doi: 10.13870/j.cnki.stbcxb.2016.03.025
[32] Huang J, Yang Z, Li J , et al. Cadmium accumulation characteristics of floricultural plant Cosmos bipinnata. Chemistry and Ecology, 2017,33(8):1-10.
doi: 10.1080/02757540.2016.1246544
[33] Wei S, Wang S, Zhou Q , et al. Potential of Taraxacum mongolicum Hand-Mazz for accelerating phytoextraction of cadmium in combination with eco-friendly amendments. Journal of Hazardous Materials, 2010,181(1):480-484.
doi: 10.1016/j.jhazmat.2010.05.038 pmid: 20570438
[34] Dai H, Wei S, Twardowska I , et al. Hyperaccumulating potential of Bidens pilosa L. for Cd and elucidation of its translocation behavior based on cell membrane permeability. Environmental Science and Pollution Research, 2017,24(29):23161-23167.
doi: 10.1007/s11356-017-9962-9 pmid: 28828736
[35] Rivelli A R, Maria S D, Puschenreiter M , et al. Accumulation of cadmium,zinc,and copper by Helianthus annuus L.:Impact on plant growth and uptake of nutritional elements. International Journal of Phytoremediation, 2012,14(4):320-334.
doi: 10.1080/15226514.2011.620649 pmid: 22567714
[36] 陈立, 王丹, 龙婵 , 等. 3种螯合剂对向日葵修复镉污染土壤的影响. 环境科学与技术, 2017(11):22-29.
[37] Melo E E, Costa E T, Guilherme L R , et al. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. Journal of Hazardous Materials, 2009,168(1):479-483.
doi: 10.1016/j.jhazmat.2009.02.048 pmid: 19304379
[38] 范洪黎, 周卫 . 镉超富集苋菜品种(Amaranthus mangostanus L.)的筛选. 中国农业科学, 2009,42(4):1316-1324.
doi: 10.3864/j.issn.0578-1752.2009.04.023
[39] Zhuang P, Yang Q, Wang H , et al. Phytoextraction of heavy metals by eight plant species in the field. Water,Air, and Soil Pollution, 2007,184(1-4):235-242.
doi: 10.1007/s11270-007-9412-2
[40] 聂惠, 安玉麟, 李素萍 . 向日葵对重金属胁迫反应及其植物修复的研究进展. 黑龙江农业科学, 2010(9):88-91.
[41] 马灏 . 蓖麻、向日葵对Cd和Zn污染场地的原位修复试验研究. 上海:上海大学, 2015.
[42] 肖璇 . 油菜和向日葵修复Pb污染土壤的研究. 杨凌:西北农林科技大学, 2009.
[43] 王学锋, 崔倩 . EDTA、柠檬酸对向日葵吸收重金属Cd-Ni的影响// 全国农业环境科学学术研讨会. 2007.
[44] Liphadzi M S, Kirkham M B, Mankin K R , et al. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant & Soil, 2003,257(1):171-182.
doi: 10.1023/A:1026294830323
[1] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[2] Shaokun Li,Wanxu Zhang,Keru Wang,Wanbing Yu,Yongsheng Chen,Dongsheng Han,Xiaoxia Yang,Chaowei Liu,Guoqiang Zhang,Yizhou Wang,Fenghe Liu,Jianglu Chen,Jingjing Yang,Ruizhi Xie,Peng Hou,Bo Ming. The Selection of High Yield Maize Cultivars Suitable for Dense Planting and Grain Mechanical Harvesting in North of Xinjiang [J]. Crops, 2018, 34(4): 62-68.
[3] Yuqiao Cao,Qingkai Nie,Yun Gao,Zicheng Xu,Wuxing Huang. The Studies on Cadmium and Its Chelate Related Transporters in Plants [J]. Crops, 2018, 34(3): 15-24.
[4] Keru Wang,Shaokun Li,Yanbo Wang,Haiyan Zhao,Yuzhong Shen,Dandan Cai,Wanxin Xiao,Wenye Jiang,Zhaofu Huang,Lichao Zhai,Lulu Li,Ruizhi Xie,Peng Hou,Bo Ming. Screening Maize Varieties Suitable for Mechanical Harvesting Grain in the Central Liaoning Province [J]. Crops, 2018, 34(3): 97-102.
[5] Haiyun Rui,Zhenguo Shen,Fenqin Zhang. Effects of Soil Cadmium Contamination on Growth, Cadmium Accumulation and Nutrient Uptake of Vicia sativa L. [J]. Crops, 2017, 33(6): 104-108.
[6] Youyu Jia,Xiong Zhang,Yu Gao,Jian Zhang,Yongfeng Ren,Xiulan Yin,Peiyi Zhao,Shengpeng Diao,Jing Nie,Caixia Di,Hao An. Effects of Mulching Ways on Soil Hydro-Thermal Condition and Yield of Sunflowers on Rainfed Farmland [J]. Crops, 2017, 33(6): 72-78.
[7] Miao Xu,Wenshou He,Kun Ma. Effects of Chemical and Organic Fertilizers on Yield and Quality of Oilseed Sunflower [J]. Crops, 2017, 33(5): 129-135.
[8] Jixia Liu,Junjian Shan,Yuanchun Ma,Baoan Zeng. Pathogenicity and Biological Characteristics of Verticillium wilt of Sunflower in Ningxia [J]. Crops, 2017, 33(4): 161-164.
[9] Yujie Wang,Baoyu Liu,Lei Zhou,Xiping Zhou,Shuangping Liu,Qi Wang,Jun Zhao,Hongyou Zhou. Improving the Control Ability of Anti-Cropping Agent on Sunflower Verticillium wilt [J]. Crops, 2017, 33(4): 155-160.
[10] Wenhao Wang,Hongyuan Zheng,Wenjun Liu,Lifen He,Yuxing Yan. Effects of Exogenous Nitric Oxide on Seed Germination and Seedling Growth of Sunflower [J]. Crops, 2017, 33(4): 169-172.
[11] Zongze Li,Yongwei Chen,Quanwen Zhou,Wenli Ma,Sicheng Wang. Preliminary Comparison on Characteristics and Quality of Direct Seeding Rice in Yinbei Irrigation Areas of Ningxia [J]. Crops, 2017, 33(4): 38-43.
[12] Haiyun Rui,Xingxing Zhang,Zhenguo Shen,Fenqin Zhang. Water Deficit Stress and Osmotic Substances Accumulation of Vicia sativa L. under Cadmium Stress [J]. Crops, 2017, 33(3): 69-74.
[13] Lijie Liu,Dongxiang Zhang,Zhongmin Jin,Lidong Lin,Yanbo Ren,Jingtong Zhao,Jing Cang. Effects of Exogenous Salicylic Acid on Cell Ultrastructure of Winter Wheat under Cold Stress in Frigid Region [J]. Crops, 2017, 33(3): 60-68.
[14] Sainan Luo,Rui Tang,Wen Zhang,Yanlan Wang,Weihong Wang. Adaptation of Five Potato Cultivars in Hunan Winter Paddy Field [J]. Crops, 2017, 33(3): 25-28.
[15] Bin Zhang,Junyong Ge,Wanjun Yang,Xia Wang,Changye Tian,Yunxia Li,Wenbo Zuo,Min Xu. Effects of Nitrogen Topdressing at Jointing Stage on Yield and Profit of Main Varieties of Naked Oat (Avena nuda L.) [J]. Crops, 2017, 33(2): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!