Crops ›› 2019, Vol. 35 ›› Issue (5): 129-134.doi: 10.16035/j.issn.1001-7283.2019.05.022

Previous Articles     Next Articles

Effects of Organic Materials Returning on Enzyme Activities and Soil Carbon and Nitrogen Content in Wheat Field under Nitrogen-Reducing Conditions

Li Chunxi1,Li Sisi1,Shao Yun1,Ma Shouchen2,Liu Qing1,Weng Zhengpeng1,Li Xiaobo1   

  1. 1 College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
    2 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
  • Received:2019-03-01 Revised:2019-07-05 Online:2019-10-15 Published:2019-11-07

Abstract:

Based on the field experiment, the effects of different organic materials returning on soil enzyme activities and soil nutrients in wheat were studied. Four models were designed: single application of nitrogen (CK, N 270kg/hm 2),straw returning (J, N 216kg/hm 2), straw and cow dung (JF, N 216kg/hm 2), straw and mushroom dregs (JZ, N 216kg/hm 2),0-60cm soil layer on wheat field urease, invertase activity and soil organic matter and total nitrogen content were studied. The results showed that the urease activity was the highest in the jointing stage at 0-20cm, and the urease activity was the highest in the jointing stage and flowering stage in the treatment of 20-40cm soil layer straw returning and mushroom dregs (JZ). In 0-20cm and 20-40cm soil layers, the invertase activity of straw and cow dung (JF) treatment was significantly higher than CK treatment at jointing stage. Except for J treatment, other treatments in the 0-20cm the organic matter content layer was the highest at jointing stage, and JF treatment was the highest, followed by JZ and J treatment, CK treatment was the lowest; the total nitrogen content of JF treatment was the highest in the 0-20cm soil layer, and it was significantly higher than CK. The return of organic materials to soil could effectively increase soil urease activity, invertase activity, the content of organic matter and total nitrogen. Soil urease, invertase activity and organic matter and total nitrogen content were significantly positively correlated. In summary, organic materials returning to the field under reduced nitrogen applications can improve soil quality.

Key words: Wheat field, Organic materials, Soil nutrients, Enzyme activity

Table 1

Soil nutrient characteristics (0-60cm)"

土层(cm)
Soil depth
全氮(g/kg)
Total N
有机碳(g/kg)
Organic carbon
速效氮(mg/kg)
Available N
速效磷(mg/kg)
Available P
速效钾(mg/kg)
Available K
pH
0~20 0.94 10 44 22 283 8.06
20~40 0.59 6 29 16 163 8.10
40~60 0.41 5 19 8 126 8.01

Fig.1

Changes of urease activities in different soil layers of wheat at different growth stages"

Fig.2

Changes of invertase activities in different soil layers of wheat at different growth stages"

Table 2

Variance analysis of soil organic carbon content in different soil layers at different growth stages g/kg"

处理
Treatment
苗期Seedling stage 拔节期Jointing stage 开花期Flowering stage 成熟期Mature stage
0~20cm 20~40cm 40~60cm 0~20cm 20~40cm 40~60cm 0~20cm 20~40cm 40~60cm 0~20cm 20~40cm 40~60cm
CK 25.1d 22.1b 19.1ab 36.2b 22.8c 19.5a 32.6b 23.7d 17.7c 26.5d 22.6d 17.6c
J 30.1c 26.9a 18.5b 35.8b 29.9ab 20.4a 35.9ab 29.5b 19.7b 30.1c 26.7b 19.4b
JZ 32.2b 27.3a 19.6a 36.3b 27.1b 21.2a 35.9ab 26.7c 20.8ab 34.5b 25.3c 19.7ab
JF 34.5a 29.9a 19.6a 40.9a 33.6a 21.9a 37.9a 32.5a 21.1a 36.5a 28.3a 20.4a

Table 3

Variance analysis of soil total nitrogen contents in different soil layers at different growth stages g/kg"

处理Treatment 苗期Seedling stage 拔节期Jointing stage 开花期Flowering stage 成熟期Mature stage
0~20cm 20~40cm 40~60cm 0~20cm 20~40cm 40~60cm 0~20cm 20~40cm 40~60cm 0~20cm 20~40cm 40~60cm
CK 0.88b 0.41c 0.33b 1.27c 0.79b 0.56b 1.24b 0.55c 0.42b 0.92c 0.55b 0.39b
J 0.94b 0.57b 0.34b 1.43b 0.82b 0.58b 1.22b 0.66bc 0.45b 1.00b 0.58ab 0.43ab
JZ 1.08ab 0.66ab 0.35b 1.76a 0.83b 0.61b 1.41b 0.84ab 0.51b 1.06b 0.59ab 0.43ab
JF 1.34a 0.74a 0.51a 1.87a 0.90a 0.70a 1.80a 0.97a 0.64a 1.35a 0.65a 0.45a

Table 4

Correlation between soil nutrient and enzyme activity"

指标
Index
脲酶活性
Urease activity
蔗糖酶活性
Invertase activity
有机碳含量
Organic carbon content
全氮含量
Total nitrogen content
脲酶活性Urease activity 1
蔗糖酶活性Invertase activity 0.905** 1
有机碳含量Organic carbon content 0.904** 0.846** 1
全氮含量Total nitrogen content 0.929** 0.930** 0.886** 1
[1] 栾江, 仇焕广, 井月 , 等. 我国化肥施用量持续增长的原因分解及趋势预测. 自然资源学报, 2013,28(11):1869-1878.
doi: 10.11849/zrzyxb.2013.11.004
[2] 李子涵 . 我国粮食生产中的化肥过量施用研究. 安徽农业科学, 2016,44(16):245-247.
[3] 房丽萍, 孟军 . 化肥施用对中国粮食产量的贡献率分析—基于主成分回归C-D生产函数模型的实证研究. 中国农学通报, 2013(17):156-160.
[4] 宁川川, 王建武, 蔡昆争 . 有机肥对土壤肥力和土壤环境质量的影响研究进展. 生态环境学报, 2016,25(1):175-181.
[5] 魏彬萌 . 不同种类有机肥对土壤培肥效果的研究. 陕西农业科学, 2017,63(10):73-77,79.
[6] 陈永杏, 董红敏, 陶秀萍 , 等. 猪场沼液灌溉冬小麦对土壤质量的影响. 中国农学通报, 2011,27(3):154-158.
[7] 韩新忠, 朱利群, 杨敏芳 , 等. 不同小麦秸秆还田量对水稻生长、土壤微生物生物量及酶活性的影响. 农业环境科学学报, 2012(11):2192-2199.
[8] 黄继川, 彭智平, 于俊红 , 等. 施用玉米秸秆堆肥对盆栽芥菜土壤酶活性和微生物的影响. 植物营养与肥料学报, 2010,16(2):348-353.
doi: 10.11674/zwyf.2010.0213
[9] Turmel M S, Speratti A, Baudron F , et al. Crop residue management and soil health:A systems analysis. Agricultural Systems, 2015,134:6-16.
[10] 万宝瑞 . 新形势下我国农业发展战略思考. 农业经济问题, 2017,38(1):4-8.
[11] 武晓森, 周晓琳, 曹凤明 , 等. 不同施肥处理对玉米产量及土壤酶活性的影响. 中国土壤与肥料, 2015(1):44-49.
[12] 夏雪 . 不同有机肥条件下施氮水平对土壤水解酶活性影响的研究. 杨凌:西北农林科技大学, 2010.
[13] 宋震震, 李絮花, 李娟 , 等. 有机肥和化肥长期施用对土壤活性有机氮组分及酶活性的影响. 植物营养与肥料学报, 2014,20(3):525-533.
doi: 10.11674/zwyf.2014.0302
[14] 胡乃娟, 韩新忠, 杨敏芳 , 等. 秸秆还田对稻麦轮作农田活性有机碳组分含量、酶活性及产量的短期效应. 植物营养与肥料学报, 2015,21(2):371-377.
doi: 10.11674/zwyf.2015.0211
[15] 李倩, 张睿, 贾志宽 . 玉米旱作栽培条件下不同秸秆覆盖量对土壤酶活性的影响. 干旱地区农业研究, 2009,27(4):152-154,162.
[16] 胡慧蓉, 田昆 . 土壤学实验指导教程. 北京: 中国林业出版社, 2012: 20-67.
[17] 黄勇, 杨忠芳 . 土壤质量评价国外研究进展. 地质通报, 2009,28(1):130-136.
[18] 关松荫 . 土壤酶及其研究方法. 北京: 农业出版社, 1986: 260-339.
[19] 刘善江, 夏雪, 陈桂梅 , 等. 土壤酶的研究进展. 中国农学通报, 2011,27(21):1-7.
[20] 张鹏, 贾志宽, 路文涛 , 等. 不同有机肥施用量对宁南旱区土壤养分、酶活性及作物生产力的影响. 植物营养与肥料学报, 2011,17(5):1122-1130.
doi: 10.11674/zwyf.2011.1105
[21] 孙瑞莲, 赵秉强, 朱鲁生 , 等. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用. 植物营养与肥料学报, 2003,9(4):406-410.
doi: 10.11674/zwyf.2003.0405
[22] 卫婷, 韩丽娜, 韩清芳 , 等. 有机培肥对旱地土壤养分有效性和酶活性的影响. 植物营养与肥料学报, 2012,18(3):611-620.
doi: 10.11674/zwyf.2012.11339
[23] Marschner P, Kandeler E, Marschner B . Structure and function of the soil microbial commuity in a long-term fertilizer experiment. Soil Biology and Biochemistry, 2003,35(3):453-461.
[24] Wei T, Zhang P, Wang K , et al. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS ONE, 2015,10(4):e0120994.
[25] 张英英, 蔡立群, 张仁陟 , 等. 不同耕作措施对春小麦生育期内土壤酶活性的影响. 干旱区资源与环境, 2016,30(10):88-92.
[26] Wagner S, Cattle S R, Scholten T . Soil-aggregate formation as influenced by clay content and organic-matter amendment. Journal of Plant Nutrition and Soil Science, 2007,170(1):173-180.
[27] Tong X, Xu M, Wang X , et al. Long-term fertilization effects on organic carbon fractions in a red soil of China. Catena, 2014,113(1):251-259.
[28] 张贵龙, 赵建宁, 宋晓龙 , 等. 施肥对土壤有机碳含量及碳库管理指数的影响. 植物营养与肥料学报, 2012,18(2):359-365.
doi: 10.11674/zwyf.2012.11209
[29] 路文涛, 贾志宽, 张鹏 , 等. 秸秆还田对宁南旱作农田土壤活性有机碳及酶活性的影响. 农业环境科学学报, 2011,30(3):552-528.
[30] 林诚, 王飞, 李清华 , 等. 不同施肥制度对黄泥田土壤酶活性及养分的影响. 中国土壤与肥料, 2009(6):24-27.
[31] 白和平, 胡喜巧, 朱俊涛 , 等. 玉米秸秆还田对麦田土壤养分的影响. 科技信息, 2011(11):43-44.
[32] 吴玉红, 郝兴顺, 田霄鸿 , 等. 秸秆还田与化肥减量配施对稻茬麦土壤养分、酶活性及产量影响. 西南农业学报, 2018,31(5):998-1005.
[33] 荣勤雷, 梁国庆, 周卫 , 等. 不同有机肥对黄泥田土壤培肥效果及土壤酶活性的影响. 植物营养与肥料学报, 2014,20(5):1168-1177.
[1] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize [J]. Crops, 2019, 35(3): 118-125.
[2] Min Song,Haipeng Zhang,Xingtao Lu,Cuixia Wu,Yong Zhang. Control Effect of Six Soil-Applied Herbicides on Lamium amplexicaule L. in Winter Wheat Field [J]. Crops, 2018, 34(2): 161-165.
[3] Jingang Liang,Zhengguang Zhang. Advance on Effects of Genetically ModifiedCrops on Soil Ecosystems [J]. Crops, 2017, 33(4): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato[J]. Crops, 2019, 35(5): 114 -119 .
[3] Hua Yuhui,Gao Zhiqiang. Hyperspectral Estimation of SPAD Values in Different Varieties of Autumn Maize[J]. Crops, 2019, 35(5): 173 -179 .
[4] Ren Yongfeng,Lu Zhanyuan,Zhao Peiyi,Gao Yu,Liu Guanghua,Li Yanfang. Effects of Different Planting Methods on Water Utilization and Yield of Potato in Dryland[J]. Crops, 2019, 35(5): 120 -124 .
[5] Shi Liran,Hao Hongbo,Cui Haiying,Li Mingzhe. Effects of Shading on Photosynthetic Characteristics and Rapid Chlorophyll Fluorescence Kinetic Characteristics of Foxtail Millet[J]. Crops, 2019, 35(5): 125 -128 .
[6] Liang Xiaohong,Zhang Ruidong,Huang Minjia,Liu Jing,Cao Xiong. Interaction of Film Mulching and Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Sorghum[J]. Crops, 2019, 35(5): 135 -142 .
[7] Chen Li,Zhang Luxin,Wu Feng,Li Zhen,Long Xingzhou,Yang Yurui,Yin Baozhong. Effects of Wheat-Maize Double Crops Rotational Tillage on Soil Characteristics and Crop Yield in Hebei Plain[J]. Crops, 2019, 35(5): 143 -150 .
[8] Jiang Lina,Zhang Yawen,Zhu Yalin,Zhao Lingxiao. Effects of Nitrogen Application on Dry Matter Accumulation, Transport and Yield in Different Wheat Varieties[J]. Crops, 2019, 35(5): 151 -158 .
[9] Dong Zhiqiang,Wang Mengmeng,Li Hongyi,Xue Xiaoping,Pan Zhihua,Hou Yingyu,Chen Chen,Li Nan,Li Manhua. Applicability Assessment of WOFOST Model of Growth and Yield of Summer Maize in Shandong Province[J]. Crops, 2019, 35(5): 159 -165 .
[10] Wang Jinsong,Dong Erwei,Jiao Xiaoyan,Wu Ailian,Bai Wenbin,Wang Lige,Guo Jun,Han Xiong,Liu Qingshan. Effects of Different Planting Patterns on Yield and Nutrient Absorption of Sorghum Jinnuo 3[J]. Crops, 2019, 35(5): 166 -172 .