Crops ›› 2019, Vol. 35 ›› Issue (5): 143-150.doi: 10.16035/j.issn.1001-7283.2019.05.024

Previous Articles     Next Articles

Effects of Wheat-Maize Double Crops Rotational Tillage on Soil Characteristics and Crop Yield in Hebei Plain

Chen Li1,Zhang Luxin2,Wu Feng1,Li Zhen1,Long Xingzhou1,Yang Yurui1,Yin Baozhong2   

  1. 1 Hebei Xingtai Academy of Agricultural Sciences, Xingtai 054000, Hebei, China
    2 College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
  • Received:2019-03-06 Revised:2019-06-20 Online:2019-10-15 Published:2019-11-07
  • Contact: Xingzhou Long

Abstract:

In the double cropping growing season of winter wheat-summer maize from 2016 to 2017, four rotation tillage treatments were established. Setting wheat season subsoiling+maize season no-tillage (S-N), wheat season rotary tillage+maize season subsoiling (R-S), wheat season subsoiling+maize season subsoiling (S-S), and conventional tillage mode wheat season rotary tillage+maize season no-tillage (R-N) as the control. Soil physiology, microorganism characteristics, water and heat conditions, soil water use efficiency and grain yield of grain fields under different rotation modes were studied in Nanhe, central Hebei Plain. The results showed that: compared with before the sowing of wheat, the non-capillary porosity of R-S and S-S treatments increased significantly, and the avarage soil thickness of 0-15 and 15-30cm increased by 15.2% and 18.0%, respectively. R-N treatment 0-15 and 15-30cm soil layer non-capillary porosity ratio decreased by 11.3% and 7.3% before wheat sowing. Soil alkaline phosphatase (ALP), polyphenol oxidase (PPO), catalase (CAT) and urease (UU) activities were significantly increased by single-season or double-season subsoiling, especially by R-S and S-S treatments. Single season subsoiling or two season subsoiling could significantly increase the number of SMBC and active microorganisms, with an average increase of 6.3% and 20.6% in 0-30cm soil layer, respectively. The annual average soil respiration was increased by 12.4% and the variation of soil respiration rate was increased by two-season subsoiling rotation. Under different rotation tillage measures, the annual average soil temperature had little effect, but deep-loosening could increase the annual temperature variation of wheat fields. The water use efficiency (WUE) could also be promoted by single-season subsoiling or two-season subsoiling rotation. The annual crop yield could also be significantly increased by two-season subsoiling, with an average increase of 8.62%. The main conclusions are as follows: subsoiling can significantly improve soil physical properties, increase soil key enzyme activity and respiration rate, expand daily variation of soil temperature, and optimize soil microbial environment. Soil subsoiling can also significantly increase maize yield, of which two-season subsoiling treatment has the greatest yield increase.

Key words: Hebei Plain, Wheat-maize double cropping per year, Rotation mode, Soil property, Yield

Table 1

Effects of different rotational tillage pattern on soil non-capillary porosity and soil dispersion coefficient %"

土层
Soil depth (cm)
处理
Treatment
非毛管孔隙度Non-capillary porosity 土壤分散系数Soil dispersion coefficient
小麦播前
Before the
sowing of wheat
小麦拔节
Wheat
jointing
玉米抽雄
Maize
tasseling
玉米收获
Maize
harvest
小麦播前
Before the
sowing of wheat
小麦拔节
Wheat
jointing
玉米抽雄
Maize
tasseling
玉米收获
Maize
harvest
0~15 R-N 11.5a 10.3b 9.2a 10.2b 10.6a 6.1a 5.8a 9.2a
S-N 11.3a 11.6a 9.1a 11.1b 10.1a 6.9a 4.3b 6.3b
R-S 11.6a 10.4b 9.3a 13.2a 10.3a 6.2a 4.1b 6.3b
S-S 11.5a 11.6a 9.5a 13.4a 10.4a 6.7a 3.9b 5.5c
15~30 R-N 10.9a 10.4b 5.2b 10.1c 9.6a 11.6a 7.1a 9.2a
S-N 11.1a 12.5a 11.9a 11.3b 9.4a 8.2b 5.8b 6.3b
R-S 10.8a 10.7b 5.3b 12.2b 9.5a 11.8a 5.1b 5.3c
S-S 10.9a 12.9a 12.1a 13.4a 9.4a 8.2b 4.8b 5.2c
30~50 R-N 9.5a 6.1d 2.6b 2.9b 9.1a 10.6a 13.9a 7.1a
S-N 9.5a 7.6c 3.5a 3.8a 9.2a 7.6b 11.1b 6.1b
R-S 9.6a 9.2b 2.4b 3.9a 9.2a 10.6a 11.2b 5.9b
S-S 9.4a 10.1a 3.6a 4.1a 8.9a 7.2b 9.1c 4.3c

Table 2

Effects of different rotational tillage pattern on the soil key enzyme activities"

项目
Item
生育阶段
Growth stage
0~15cm 15~30cm
R-N S-N R-S S-S R-N S-N R-S S-S
脲酶 小麦播前Before the sowing of wheat 0.22a 0.23a 0.23a 0.25a 0.18a 0.13ab 0.16ab 0.14ab
Urease [mg/(g·24h)] 小麦拔节Wheat jointing 0.25a 0.28a 0.27a 0.27a 0.39b 0.51a 0.37b 0.50a
玉米抽雄Maize tasseling 0.20c 0.26b 0.30a 0.30a 0.24c 0.37a 0.31a 0.32a
玉米收获Maize harvest 0.19c 0.24ab 0.28a 0.29a 0.18a 0.15ab 0.22a 0.19a
CAT [mL/(g·h)] 小麦播前Before the sowing of wheat 2.23a 2.35a 2.16a 2.13a 2.92a 3.01a 3.01a 2.79ab
小麦拔节Wheat jointing 2.49c 2.65b 2.47c 3.58a 3.12b 4.32a 3.09b 4.11a
玉米抽雄Maize tasseling 2.29c 4.14a 2.90b 3.99a 2.88c 3.94a 2.89c 3.55b
玉米收获Maize harvest 2.26b 2.59a 2.49a 2.51a 3.01b 3.21a 3.19a 2.99b
ALP [g/(kg)] 小麦播前Before the sowing of wheat 24.55ab 26.32a 26.04a 25.76ab 31.52ab 32.52ab 32.14ab 33.08a
小麦拔节Wheat jointing 27.39b 28.97b 25.97c 39.41a 35.64b 40.62a 36.01b 41.13a
玉米抽雄Maize tasseling 28.37d 37.16b 33.11c 42.33a 40.31b 45.31a 39.87b 45.92a
玉米收获Maize harvest 25.09c 28.37a 28.26a 27.31ab 31.34c 33.97b 35.44a 35.69a
PPO [μg/g·min] 小麦播前Before the sowing of wheat 0.39a 0.41a 0.39a 0.38a 0.75ab 0.76ab 0.78ab 0.83a
小麦拔节Wheat jointing 0.45b 0.50a 0.46b 0.60a 0.85b 0.94a 0.88b 1.03a
玉米抽雄Maize tasseling 0.44c 0.57b 0.66a 0.63a 0.91c 1.15b 1.10b 1.32a
玉米收获Maize harvest 0.40b 0.52a 0.50a 0.49a 0.76b 0.88a 0.88a 0.91a

Table 3

Effects of different rotational tillage pattern on SMBC content and active microbial biomass"

项目
Item
生育阶段
Growth stage
0~15cm 15~30cm
R-N S-N R-S S-S R-N S-N R-S S-S
SMBC含量(mg/kg) 小麦播前Before the sowing of wheat 158.20a 154.32a 156.30a 155.90a 105.61a 102.30a 105.46a 104.31a
SMBC content 小麦拔节Wheat jointing 166.21b 164.32b 170.12a 173.24a 171.21b 181.21a 171.67b 188.32a
玉米抽雄Maize tasseling 175.34c 192.34b 204.60ab 215.60a 185.34d 200.14c 214.69b 229.64a
玉米收获Maize harvest 158.60a 165.08a 163.97a 163.20a 103.22b 106.89ab 108.90a 109.20a
活跃微生物量(mg/kg) 小麦播前Before the sowing of wheat 25.32a 25.61a 25.48a 26.03a 5.39c 5.36c 6.04b 16.11a
Number of active microorganisms 小麦拔节Wheat jointing 95.37b 100.12a 98.74a 97.63a 44.15b 69.74a 65.16a 64.32a
玉米抽雄Maize tasseling 106.91c 117.11b 125.40a 129.10a 64.15c 85.67b 91.11a 98.12a
玉米收获Maize harvest 25.31b 30.11a 31.67a 30.85a 20.16b 30.14a 30.04a 29.61a

Fig.1

Soil respiration rate and temperature in different rotational tillage pattern Fig.(a) and (c) are soil respiration rate dynamics and change amplitude, respectively; Fig.(b) and (d) are soil temperature dynamics and change amplitude at 10cm, respectively"

Table 4

Effects of different rotational tillage patterns on soil water characteristics of farmland"

处理
Treatment
总耗水量(mm)
Total water
consumption
耗水量(mm)
Water consumption
0~200cm土体储水变化(mm)
Water storage in
0~200cm soil mass
产量Yield (kg/hm2) WUE
(kg/kg)
0~60mm 60~120mm 120~200mm 小麦Wheat 玉米Maize 周年Anniversary
R-N 814.3a 32.1a 20.3a 17.9a -61.2 7 507.0b 8 712.6b 16 219.6b 20.13c
S-N 781.9b 13.6b 15.8b 8.5c -37.9 8 155.1a 8 887.2b 17 042.3a 22.23ab
R-S 790.3b 16.2b 19.1ab 11.0b -46.3 7 596.3b 9 697.1a 17 293.4a 21.15b
S-S 767.9c 6.9c 12.1c 5.0d -23.9 8 170.4a 9 471.3a 17 641.7a 23.13a
[1] Castellano M J, Valone T J . Livestock,soil compaction and water infiltration rate:Evaluating a potential desertification recovery mechanism. Journal of Arid Environments, 2007,71(1):97-108.
[2] Zhang J, Niu J M, Bao T L G , et al. Human induced dryland degradation in Ordos Plateau,China,revealed by multilevel statistical modeling of normalized difference vegetation index and rainfall time-series. Journal of Arid Land, 2014,6(2):219-229.
[3] Prosser J I, Bohannan B J M, Curtis T P , et al. The role of ecological theory in microbial ecology. Nature Reviews Microbiology, 2007,5(5):384-392.
[4] Kasper M, Buchan G D, Mentler A , et al. Influence of soil tillage systems on aggregate stability and the distribution of C and N in different aggregate fractions. Soil Tillage and Research, 2009,105(2):192-199.
[5] 候贤清, 贾志宽, 韩清芳 , 等. 不同轮耕模式对旱地土壤结构及入渗蓄水特性的影响. 农业工程学报, 2012,28(5):85-94.
[6] Riley H C F, Bleken M A, Abrahamsen S , et al. Effects of alternative tillage systems on soil quality and yield of spring cereals on silty clay loam and sandy loam soils in the cool,wet climate of central Norway. Soil Tillage and Research, 2005,80(1/2):79-93.
[7] Zhou H, Lü Y Z, Yang Z C , et al. Influence of conservation tillage on soil aggregates features in north China Plain. Agricultural Sciences in China, 2007,6(9):1099-1106.
[8] Josa R, Hereter A . Effects of tillage systems in dryland farming on near-surface water content during the late winter period. Soil and Tillage Research, 2005,82(2):173-183.
[9] 邱红波, 何腾兵, 龙友华 , 等. 免耕栽培对玉米根系特征和产量的影响. 贵州农业科学, 2011,39(9):55-57.
[10] 梁建斌, 刘今河, 杨涛 . 不同耕作方式对玉米根系生长发育及土壤水分的影响. 安徽农业科学, 2006,34(11):2353-2354.
[11] 王宜伦, 李潮海, 王瑾 , 等. 缓/控释肥在玉米生产中的应用与展望. 中国农学通报, 2009,25(24):254-257.
[12] 李勇军, 曹庆军, 拉民 , 等. 不同耕作处理对土壤酶活性的影响. 玉米科学, 2012,20(3):111-114.
[13] 秦纪洪, 黄雪菊, 孙辉 , 等. 低温季节西南亚高山森林土壤多酚氧化酶动态研究. 土壤通报, 2012,43(5):1073-1079.
[14] Vance E D, Brookesa P C, Jenkinsona D S . An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987,19(6):703-707.
[15] 高云超, 朱文珊, 陈文新 . 秸秆覆盖免耕土壤细菌和真菌生物量与活性的研究. 生态学杂志, 2001(2):30-36.
[16] Wang M, Liu X T, Zang J T , et al. Diurnal and seasonal dynamics of soil respiration at temperate leymus chinensis meadow steppes in western Songnen plain,China. Chinese Geographical Science, 2014,24(3):287-296.
[17] Hu J Z, Zhang W H, Li W Z , et al. Effect of plant community on anti-erodibility of lang under rehabilitation in beichuanhe basin. Acta Pedologica Sinica, 2004,41(6):854-863.
[18] Tian J R . Primary study on soil physical properties and anti-erodibility index in Lianjiabian are as of Ziwuling Mountain. Acta Pedologica Sinica, 1964,12(3):20-38.
[19] Chen H Q, Hou R X, Gong Y S , et al. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil and Tillage Research, 2009,106(1):85-94.
[20] Vita D P, Paolo E D, Fecondo G , et al. No-tillage and conventional tillage effects on durum wheat yield,grain quality and soil moisture content in southern Italy. Soil and Tillage Research, 2007,92(1/2):69-78.
[21] 赵建波 . 保护性耕作对农田土壤生态因子及温室气体排放的影响. 泰安:山东农业大学, 2008.
[22] 王玉玲, 李军, 柏炜霞 . 轮耕体系对黄土台塬麦玉轮作土壤生产性能的影响. 农业工程学报, 2015,31(1):107-116.
[23] 苏衍涛, 王凯荣, 刘迎新 , 等. 稻草覆盖对红壤旱地土壤温度和水分的调控效应. 农业环境科学学报, 2008,27(2):670-676.
[24] 尹宝重, 甄文超, 郭丽果 . 深松一体化播种对夏玉米农田土壤水热特征及微生物动态的影响. 中国生态农业学报, 2015,23(3):285-293.
[25] 张玉铭, 胡春胜, 毛任钊 , 等. 华北太行山前平原农田生态系统中氮、磷、钾循环与平衡研究. 应用生态学报, 2003,14(11):1863-1867.
[26] 吴海燕, 金荣德, 范作伟 , 等. 东北黑土区不同耕作方式土壤养分与酶活性的时空变化. 水土保持学报, 2009,23(6):154-157,170.
[27] 孙瑞莲, 赵秉强, 朱鲁生 , 等. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用. 植物营养与肥料学报, 2003,9(4):406-410.
doi: 10.11674/zwyf.2003.0405
[28] 唐先亮, 魏甲彬, 周玲红 , 等. 耕作方式对稻田土壤微生物量碳氮的动态影像. 作物研究, 2016,30(3):282-287.
[29] 王彩霞, 王旭东, 朱瑞祥 . 保护性耕作对土壤结构体碳氮分布的影响. 自然资源学报, 2010,25(3):386-395.
doi: 10.11849/zrzyxb.2010.03.004
[1] Zhang Yanhua,Chang Xuhong,Wang Demei,Tao Zhiqiang,Wang Yanjie,Yang Yushuang,Zhao Guangcai. Effects of Zinc Topdressing Fertilizer on Yield and Quality of Wheat under Different Soil Conditions [J]. Crops, 2019, 35(5): 109-113.
[2] Ren Yongfeng,Lu Zhanyuan,Zhao Peiyi,Gao Yu,Liu Guanghua,Li Yanfang. Effects of Different Planting Methods on Water Utilization and Yield of Potato in Dryland [J]. Crops, 2019, 35(5): 120-124.
[3] Liang Xiaohong,Zhang Ruidong,Huang Minjia,Liu Jing,Cao Xiong. Interaction of Film Mulching and Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Sorghum [J]. Crops, 2019, 35(5): 135-142.
[4] Jiang Lina,Zhang Yawen,Zhu Yalin,Zhao Lingxiao. Effects of Nitrogen Application on Dry Matter Accumulation, Transport and Yield in Different Wheat Varieties [J]. Crops, 2019, 35(5): 151-158.
[5] Dong Zhiqiang,Wang Mengmeng,Li Hongyi,Xue Xiaoping,Pan Zhihua,Hou Yingyu,Chen Chen,Li Nan,Li Manhua. Applicability Assessment of WOFOST Model of Growth and Yield of Summer Maize in Shandong Province [J]. Crops, 2019, 35(5): 159-165.
[6] Wang Jinsong,Dong Erwei,Jiao Xiaoyan,Wu Ailian,Bai Wenbin,Wang Lige,Guo Jun,Han Xiong,Liu Qingshan. Effects of Different Planting Patterns on Yield and Nutrient Absorption of Sorghum Jinnuo 3 [J]. Crops, 2019, 35(5): 166-172.
[7] Zhao Zhun,Qi Juncang,Li Jian,Guo Yan,Ling Jiangrui,Li Huqing. Influence of Mowing Stages on Hay Yield and Fermentation Quality of Spring Barley [J]. Crops, 2019, 35(5): 180-185.
[8] Ma Yifeng,Liang Qian,Ge Junzhu,Xin Decai. Comparison of Yield Formation Between Winter Wheat Jimai 22 and Spring Wheat Jinqiang 8 [J]. Crops, 2019, 35(5): 192-195.
[9] Liu Xingye,Xing Baolong,Wu Ruixiang,Wang Guimei,Liu Fei. Main Agronomic Traits Variation and Its Effects on Yield Composition of Mung Bean in Northern Shanxi Province [J]. Crops, 2019, 35(5): 69-75.
[10] Ma Fanfan,Xing Sulin,Gan Manqin,Liu Peishi,Huang Yu,Gan Xiaoyu,Ma Youhua. Effects of Organic Fertilizer Substituting for Chemical Fertilizer on Rice Yield, Soil Fertility and Nitrogen and Phosphorus Loss in Farmland [J]. Crops, 2019, 35(5): 89-96.
[11] Liu Xiaoya,Zhang Lifeng,Zhang Jizong,Shi Wenbin,Zhang Peiyue. Adapt Ability of Brassica napus to Cold Environment in Bashang of North China [J]. Crops, 2019, 35(5): 97-103.
[12] Yan Wei,Li Guolong,Li Zhi,Cao Yang,Zhang Shaoying. Effects of Nitrogen Application Rate and Planting Density Interaction on Photosynthetic Characteristics and Root Yield of Sugar Beet under Full-Film Mulching in Arid Regions [J]. Crops, 2019, 35(4): 100-106.
[13] Wan Xiaoju,Zhang Guoqiang,Wang Keru,Xie Ruizhi,Shen Dongping,Chen Jianglu,Liu Chaowei,Li Shaokun. Effects of Plastic Film Mulching and Drip Irrigation on Spring Maize in Northern Xinjiang [J]. Crops, 2019, 35(4): 107-112.
[14] Qi Deqiang,Zhao Jingjing,Feng Naijie,Zheng Dianfeng,Liang Xiaoyan. Effects of S3307 and DTA-6 on Sugar Metabolism and Yield of Potato Leaves and Tubers [J]. Crops, 2019, 35(4): 148-153.
[15] Abudukadier Kuerban,Xia Dong,Zhang Jusong,Cui Jianping,Guo Rensong,Lin Tao. Effects of Drip Irrigation Frequency on Yield and Quality of Chemical Defoliated Cotton [J]. Crops, 2019, 35(4): 113-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato[J]. Crops, 2019, 35(5): 114 -119 .
[3] Hua Yuhui,Gao Zhiqiang. Hyperspectral Estimation of SPAD Values in Different Varieties of Autumn Maize[J]. Crops, 2019, 35(5): 173 -179 .
[4] Ren Yongfeng,Lu Zhanyuan,Zhao Peiyi,Gao Yu,Liu Guanghua,Li Yanfang. Effects of Different Planting Methods on Water Utilization and Yield of Potato in Dryland[J]. Crops, 2019, 35(5): 120 -124 .
[5] Shi Liran,Hao Hongbo,Cui Haiying,Li Mingzhe. Effects of Shading on Photosynthetic Characteristics and Rapid Chlorophyll Fluorescence Kinetic Characteristics of Foxtail Millet[J]. Crops, 2019, 35(5): 125 -128 .
[6] Li Chunxi,Li Sisi,Shao Yun,Ma Shouchen,Liu Qing,Weng Zhengpeng,Li Xiaobo. Effects of Organic Materials Returning on Enzyme Activities and Soil Carbon and Nitrogen Content in Wheat Field under Nitrogen-Reducing Conditions[J]. Crops, 2019, 35(5): 129 -134 .
[7] Liang Xiaohong,Zhang Ruidong,Huang Minjia,Liu Jing,Cao Xiong. Interaction of Film Mulching and Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Sorghum[J]. Crops, 2019, 35(5): 135 -142 .
[8] Jiang Lina,Zhang Yawen,Zhu Yalin,Zhao Lingxiao. Effects of Nitrogen Application on Dry Matter Accumulation, Transport and Yield in Different Wheat Varieties[J]. Crops, 2019, 35(5): 151 -158 .
[9] Dong Zhiqiang,Wang Mengmeng,Li Hongyi,Xue Xiaoping,Pan Zhihua,Hou Yingyu,Chen Chen,Li Nan,Li Manhua. Applicability Assessment of WOFOST Model of Growth and Yield of Summer Maize in Shandong Province[J]. Crops, 2019, 35(5): 159 -165 .
[10] Wang Jinsong,Dong Erwei,Jiao Xiaoyan,Wu Ailian,Bai Wenbin,Wang Lige,Guo Jun,Han Xiong,Liu Qingshan. Effects of Different Planting Patterns on Yield and Nutrient Absorption of Sorghum Jinnuo 3[J]. Crops, 2019, 35(5): 166 -172 .