Crops ›› 2022, Vol. 38 ›› Issue (3): 134-142.doi: 10.16035/j.issn.1001-7283.2022.03.019

Previous Articles     Next Articles

Dynamic Variation and Correlation of Pericarp Tenderness and Component Contents of Super Sweet Corn

Gu Yinshan1,3(), Zhang Shilong2,3, Jia Haitao3, Li Xiaoqin2, He Zhenghua3, Jiao Chunhai3, Tian Xiaohai1, Huang Yiqin3(), Wei Wenliang1()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2South China Agricultural University/State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, Guangzhou 510642, Guangdong, China
    3Institute of Food Crops, Hubei Academy of Agriculture Sciences/Hubei Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain Crops, Wuhan 430064, Hubei, China
  • Received:2021-08-28 Revised:2021-11-10 Online:2022-06-15 Published:2022-06-20
  • Contact: Huang Yiqin,Wei Wenliang E-mail:1280443809@qq.com;whwenliang@163.com;hyqhzau@163.com

Abstract:

Ten inbred lines of super sweet corn with similar growth time and gradient difference in pericarp tenderness were used to study the dynamic change of pericarp tenderness and main constituents and their interrelationship in kernel development in order to understand the influence of the content variation of the main ingredients on pulp tenderness. The results showed that PE10 (best tenderness), T105 (medial tenderness), and S33205 (worst tenderness) of the 10 materials exhibited a curvilinear increase in pericarp tenderness score (puncture reading) from 12 to 24d after pollination in Spring (Wuhan, Hubei) and Winter (Lingshui, Hainan) in 2014. In addition, the mean values of the pericarp tenderness scores at each time point showed the same descending order of S33205, T105 and PE10. The change rate of pericarp tenderness was affected by the environment. The variation in hemicellulose content in the pericarp of three inbred lines showed the gradual increase from small to large during the test, the lignin content varied along a single peak curve, the cellulose content varied by 24% throughout, and the pectin and ash contents changed little and irregular. The average levels of the major constituents of the pericarp were all in descending order of hemicellulose, cellulose, lignin over the test period. Either in the course of grain development or at the most appropriate time of harvest, the levels of hemicellulose and lignin all correlated significantly with pericarp tenderness, which were chemical factors affecting pericarp tenderness.

Key words: Super sweet corn, Pericarp tenderness, Component content, Dynamic variation, Correlation

Table 1

Analysis of variance on pericarp tenderness"

变异来源
Source of variance
df SS MS F F0.05 F0.01
材料间
Between materials
9 16784.05 1864.89 416.81** 2.12 2.89
环境间
Between environments
1 2.38 2.38 0.53 4.08 7.31
材料×环境
Material × environment
9 26.34 2.93 0.65 2.12 2.89
误差Error 40 178.97 4.47
总变异Total variance 59 16991.74

Table 2

Multiple comparison between average pericarp tenderness of ten super sweet corninbred lines on the optimum picking time"

材料Material 果皮柔嫩度Pericarp tenderness (g/mm2)
S33205 158.03±0.71aA
S33247 152.31±1.59bB
HZ508 137.99±2.46cC
S13084 137.20±1.71cdC
S23207 134.91±2.88deDC
T105 132.45±0.86eD
S33222 128.55±2.07fE
S23288 123.92±3.12gF
S13237 107.05±2.01hG
PE10 101.33±1.56iH

Fig.1

Dynamic variation of pericarp tenderness of PE10, T105 and S33205 under two environments"

Fig.2

Comparison among variations of pericarp tenderness of PE10(a), T105(b) and S33205(c) under two environments"

Fig.3

Dynamic variation pericarp component contents of PE10"

Fig.4

Dynamic variation pericarp component contents of T105"

Fig.5

Dynamic variation pericarp component contents of S33205"

Table 3

Comparison of the content changes of pericarp components under different environmental conditions %"

材料
Material
果皮成分
Pericarp component
环境
Environment
主要成分含量Component content
12d 14d 16d 18d 20d 22d 24d
PE10 纤维素 S 23.82±0.38a 24.43±0.59a 25.59±0.84a 25.23±0.82a 26.40±1.23a 24.53±1.37a 23.37±2.25a
W 24.38±1.24a 25.92±0.65a 23.84±1.01a 23.62±0.83a 24.53±1.45a 25.48±1.13a 25.25±1.00a
半纤维素 S 20.16±0.95a 22.86±0.88a 37.78±1.06aA 40.45±1.95aA 43.21±1.05a 45.64±0.82aA 47.35±1.38a
W 17.35±1.00a 19.34±0.91a 32.16±1.85bB 35.18±1.42bB 38.94±0.69b 40.11±1.16bB 45.28±1.11a
果胶 S 1.18±1.14a 3.49±0.65a 2.49±0.59a 2.14±0.30a 2.48±0.50a 1.72±0.82a 2.19±0.43a
W 3.23±0.80a 2.89±1.03a 1.28±0.75a 2.13±0.98a 3.65±0.79a 2.73±0.95a 2.98±1.12a
木质素 S 6.03±0.53a 6.91±0.53a 6.95±0.55a 8.40±0.97aA 10.85±0.60aA 8.14±0.97a 8.15±0.77a
W 4.82±0.65a 5.09±0.98a 5.35±1.66a 5.42±0.53bB 8.45±1.22bB 8.37±0.80a 7.04±1.28a
灰分 S 1.09±0.31a 2.20±0.28a 1.83±0.64a 2.00±0.38a 1.96±0.40a 2.03±0.18a 1.14±0.34a
W 1.55±0.46a 1.13±0.26a 1.60±1.11a 1.57±0.40a 1.43±0.51a 1.64±0.61a 1.47±0.50a
T105 纤维素 S 23.38±1.10a 23.15±0.98a 24.17±1.12a 23.31±1.88a 23.08±1.26a 24.43±1.53a 23.65±1.35a
W 23.84±0.89a 24.71±1.79a 23.77±1.53a 22.86±1.96a 24.62±1.16a 25.02±2.31a 24.06±1.18a
半纤维素 S 37.97±1.29a 40.61±1.63a 46.02±1.03a 48.83±1.64aA 52.05±1.50aA 51.20±1.05a 53.78±0.88a
W 36.54±1.42a 37.85±1.65a 42.61±0.83b 43.68±1.42bB 46.27±1.38bB 48.59±0.57b 49.17±1.10a
果胶 S 2.06±0.35a 2.05±0.10a 1.84±0.37a 1.95±0.27a 2.40±0.46a 1.83±0.33a 2.01±0.30a
W 1.88±0.63a 1.94±0.80a 2.45±0.76a 2.01±0.87a 1.02±0.36a 1.71±0.44a 2.52±0.43a
木质素 S 7.56±0.74a 8.08±0.55a 8.18±0.45a 10.81±0.95aA 10.99±0.57a 10.32±0.66a 10.43±1.01a
W 6.92±0.69a 7.02±0.96a 7.24±1.03a 8.51±1.10bB 9.63±1.67b 10.71±1.05a 9.43±0.90a
灰分 S 1.96±0.41a 2.05±0.29a 1.91±0.24a 2.09±0.26a 1.63±0.34a 2.10±0.21a 2.26±0.35a
W 1.85±0.59a 1.97±0.56a 1.80±0.71a 1.79±0.55a 1.85±0.49a 2.07±0.30a 1.89±0.44a
S33205 纤维素 S 24.10±1.48a 24.57±1.24a 25.06±0.89a 24.66±0.63a 25.37±0.85a 23.78±0.81a 24.56±0.66a
W 23.48±1.04a 24.38±0.62a 25.06±1.14a 24.66±1.97a 25.37±1.62a 23.78±1.18a 24.56±1.28a
半纤维素 S 39.22±1.06a 41.91±0.92a 43.68±1.10a 45.80±1.00a 48.26±1.08a 51.67±1.10a 52.33±1.53a
W 38.62±1.22a 38.71±0.77b 43.01±0.36a 44.88±0.95a 47.77±1.29a 50.04±1.37a 51.68±1.52a
果胶 S 3.12±0.68a 3.50±0.60a 3.55±0.42a 4.35±0.57a 3.01±0.80a 3.60±0.43a 3.04±0.38a
W 3.15±1.07a 2.09±0.97b 3.04±0.36a 3.56±0.91a 2.05±0.47a 3.02±1.24a 3.45±0.53a
木质素 S 9.06±0.44a 9.28±0.60a 9.48±0.50a 11.99±1.01aA 11.79±0.71a 10.52±0.48a 10.33±0.52a
W 8.27±1.06a 9.02±1.40a 9.25±1.27a 9.77±1.83bB 11.58±1.32a 11.82±0.73a 9.83±1.31a
灰分 S 1.88±0.43a 2.08±0.34a 2.46±0.43a 2.72±0.43a 2.97±0.36a 2.92±0.33a 2.88±0.22a
W 2.71±0.43a 1.94±0.31a 2.35±0.50a 2.66±0.25a 2.87±0.51a 2.43±0.54a 2.66±0.40a

Table 4

Correlation coefficients between pericarp component and pericarp tenderness over time within each inbred in two environments"

果皮成分
Pericarp component
果皮柔嫩度Pericarp tenderness
PE10 T105 S33205
2014年春季
Spring in 2014
2014年冬季
Winter in 2014
2014年春季
Spring in 2014
2014年冬季
Winter in 2014
2014年春季
Spring in 2014
2014年冬季
Winter in 2014
纤维素Cellulose 0.08 0.24 0.22 0.20 0.15 0.22
半纤维素Hemicellulose 0.96** 0.94** 0.91** 0.87** 0.98** 0.97**
果胶Pectin -0.09 0.15 0.16 0.15 -0.21 0.22
木质素Lignin 0.71** 0.74** 0.72** 0.75** 0.72** 0.77**
灰分Ash 0.04 0.23 0.16 0.20 0.23 0.22

Table 5

Correlation coefficients between pericarp tenderness and pericarp component at the optimum picking time of different materials"

果皮成分
Pericarp component
果皮柔嫩度Pericarp tenderness
2014年春季
Spring 2014
2014年秋季
Winter 2014
纤维素Cellulose 0.13 0.09
半纤维素Hemicellulose 0.92** 0.90**
果胶Pectin 0.04 0.12
木质素Lignin 0.70** 0.72**
灰分Ash 0.11 0.20
[1] 李坤, 李高科, 肖颖, 等. 甜玉米品质遗传改良研究进展. 广东农业科学, 2020, 47(11):70-77.
[2] 史振声, 姚晓云, 朱敏. 鲜食玉米果皮特性与适口性差异研究. 玉米科学, 2013, 21(1):79-84.
[3] 乐素菊, 张璧, 刘厚诚, 等. 超甜玉米籽粒果皮厚度及灌浆特性研究. 华南农业大学学报, 2003(3):13-15.
[4] Azanza F, Klein B P, Juvik J A. Sensory characterization of sweet corn lines differing inphysical and chemical composition. Journal of Food Science, 1996, 61(1):253-257.
doi: 10.1111/j.1365-2621.1996.tb14772.x
[5] 姚晓云, 史振声. 鲜食玉米果皮厚度研究进展. 种子, 2013, 32(5):49-50.
[6] 赵捷, 王美兴, 赵蕖, 等. 甜玉米果皮细胞层数、纤维素含量与果皮柔嫩性的关系. 浙江农业科学, 2018, 59(9):1658-1662.
[7] Tracy F, Galinat W C. Thickness and cell layer number of the pericarp of sweet corn and some of its relatives. Horticultural Science, 1987, 22(4):645-647.
[8] 周淑梅, 李小琴, 孙秀东. 甜玉米子粒果皮厚度变化规律的研究. 作物杂志, 2008(1):17-20.
[9] Daniel L, Bajtay I, Gulyásné I. Quality breeding in sweet corn. Aeta Forticulturae, 1987, 220:143-146.
[10] 陈利容, 张正, 王旭清, 等. 鲜食糯玉米采后果皮和胚乳细胞变化与柔嫩度关系研究. 山东农业科学, 2013, 45(9):104-106.
[11] Zhu M, Li M, Li F H, et al. Correlation between the lignin content and mechanical properties of waxy corn pericarp. Scientia Horticulturae, 2014, 179:266-270.
doi: 10.1016/j.scienta.2014.09.040
[12] 乐素菊, 肖德兴, 刘鹏飞, 等. 超甜玉米果皮结构与籽粒柔嫩性的关系. 作物学报, 2011, 37(11):2111-2116.
[13] 王世恒, 冯凤琴, 徐仁政. 超甜玉米营养品质分析. 玉米科学, 2004, 12(1):61-62.
[14] 乐素菊, 刘厚诚, 张璧, 等. 超甜玉米籽粒乳熟期碳水化合物变化及食用品质. 华南农业大学学报(自然科学版), 2003, 24(2):9-11.
[15] 戴惠学, 胡俏强, 陈舜权. 甜玉米果皮研究进展概述. 上海农业学报, 2012, 28(4):156-159.
[16] Keegstra K. Plant cell walls. Plant Physiology, 2010, 154:483-486.
doi: 10.1104/pp.110.161240 pmid: 20921169
[17] Willberg-Keyrilainen P, Ropponen J. Evaluation of esterification routes for long chain cellulose esters. Heliyon, 2019, 5(11):e02898.
doi: 10.1016/j.heliyon.2019.e02898
[18] Xu N, Zhang W, Ren S, et al. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnol Biofuels, 2012, 5(1):58.
doi: 10.1186/1754-6834-5-58
[19] Laureano-Perez L, Teymouri F, Alizadeh H, et al. Understanding factors that limit enzymatic hydrolysis of biomass. Applied Biochemistry and Biotechnology, 2005, 124:1081-1099.
doi: 10.1385/ABAB:124:1-3:1081
[20] Zhang W, Yi Z L, Huang J F, et al. Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresource Technology, 2013, 130:30-37.
doi: 10.1016/j.biortech.2012.12.029 pmid: 23298647
[21] Ralph J, Lundquist K, Brunow G, et al. Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochemistry Review, 2004, 3(1/2):29-40.
doi: 10.1023/B:PHYT.0000047809.65444.a4
[22] Grabber J H. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Science, 2005, 45(3):820-831.
doi: 10.2135/cropsci2004.0191
[23] Turner S R, Somerville C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell, 1997, 9(5):689-701.
pmid: 9165747
[24] Kokubo A, Kuraishi S, Sakurai N. Culm strength of barley correlation among maximum bending stress, cell wall dimensions, and cellulose content. Plant Physiology, 1989, 91(3):876-882.
doi: 10.1104/pp.91.3.876 pmid: 16667151
[25] Kokubo A, Sakurai N, Kuraishi S, et al. Culm brittleness of barley mutants is caused by smaller number of cellulose molecules in cell wall. Plant Physiology, 1991, 97(2):509-514.
doi: 10.1104/pp.97.2.509 pmid: 16668428
[26] Teri A,Hale, Richard L, et al. Penetrometer and taste panel perception of pericarp tenderness in su, se, and sh 2 sweet corn at three maturities. Hori Technology, 2004, 14(4):521-524.
[27] 张士龙, 潘登, 王青峰, 等. 果实硬度计评定鲜食玉米果皮柔嫩度的可行性. 作物杂志, 2012(3):62-65.
[28] Peng L, Hocart C H, Redmond J W, et al. Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta, 2000, 211(3):406-414.
pmid: 10987560
[29] Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass. Technical Report, 2008, 510:42618.
[30] 崔彦宏, 周海, 李伯航. 甜玉米籽粒的营养品质及影响因素. 河北农业大学学报, 1996, 19(4):99-104.
[31] 刘萍. 中国鲜食甜、糯玉米品种试验产量与品质评价体系的建设. 扬州:扬州大学, 2007.
[1] Liu Hui, Liu Boyuan, Jin Mingke, Yang Weili, Zhang Siwei, Zhao Mingqin. Effects of Different Altitudes on the Contents of Aroma Precursors in Air Cured Cigar [J]. Crops, 2022, 38(5): 118-123.
[2] Jia Xiuping, Mao Xuhui, Liang Gensheng, Liu Runping, Liu Feng, Wang Xingzhen. Analysis of Physiological and Biochemical Mechanism and Growth and Development Characteristics of Saline and Alkali Resistance in Sunflower [J]. Crops, 2022, 38(5): 146-152.
[3] Jia Guotao, Zhang Junling, Wei Zhuangzhuang, Yuan Qishan, Wang Baolin, Wang Xiaoyu, Ma Shengtao, Yang Xinling, Zhang Ziying, Zhang Shiying, Jia Shiwei, Chen Yang, Liu Huimin. Research on the Regional Characteristics of Contents of Free Amino Acids in Flue-Cured Tobacco Based on Factor Analysis and Cluster Analysis [J]. Crops, 2022, 38(5): 208-214.
[4] Xiao Mingkun, Liu Guanghua, Song Jiming, Liu Qian, Duan Chunfang, Jiang Tailing, Zhang Linhui, Yan Wei, Shen Shaobin, Zhou Yingchun, Xiong Xiankun, Luo Xin, Bai Lina, Li Yuexian. Analysis of Agronomic Characteristics of Different Cassava Varieties (Lines) and Screening of High-Yielding Varieties (Lines) [J]. Crops, 2022, 38(4): 77-82.
[5] Wang Siyu, Zuo Wenbo, Zhu Kaili, Guo Huimin, Xing Bao, Guo Yuqing, Bao Yuying, Yang Xiushi, Ren Guixing. Analysis and Evaluation of Agronomic Characteristics and Nutritional Qualities of 71 Quinoa Accessions [J]. Crops, 2022, 38(3): 63-72.
[6] Zhao Lirong, Ma Ke, Zhang Liguang, Tang Sha, Yuan Xiangyang, Diao Xianmin. Analysis of Agronomic Traits and Quality of Foxtail Millet Varieties in Different Ecological Regions [J]. Crops, 2022, 38(2): 44-53.
[7] Gao Fengyun, Siqin Bateer, Zhou Yu, Jia Xiaoyun, Su Shaofeng, Zhao Xiaoqing, Jin Xiaolei. Association Analysis of Crude Fat and Fatty Acid Components in Flax Based on SSR Markers [J]. Crops, 2022, 38(1): 44-49.
[8] Zhou Qiyun, Zheng Chongyi, Jing Yongfeng, Liu Yongjun, Peng Shuguang, Chen Tao, Liu Zhixuan, Hu Ruiwen, Zhou Qingming, Li Juan. Study on Soil Organic Matter Content and Its Relationship with Nitrogen, Phosphorus and Potassium in Different Soil Layers of Rice-Growing Tobacco Areas in Southern Hunan [J]. Crops, 2021, 37(5): 114-119.
[9] Liu Wenlong, Ning Shanghui, Cao Mingfeng, Zhu Li, Gao Yuzhen, Zhang Xuewei, Wen Zixiang, Jiang Baodi, Jing Yanqiu, Deng Yong. Correlation Analysis of Soil Micronutrient and Chemical Components of Tobacco Leaves in Taoyuan County [J]. Crops, 2021, 37(5): 176-180.
[10] Tang Hongqin, Li Zhongyi, Dong Wenbin, Wei Caihui, He Tieguang, Meng Yancheng, Tang Hailing, Mo Yongcheng. Effects of Different Intercropping Modes of Green Manure Replacing Chemical Fertilizer on Cassava (Manihot esculenta Crantz) Traits and Yield [J]. Crops, 2021, 37(4): 184-190.
[11] Yang Ping, Chen Yuli, Gong Fajiang, Bi Haibin, Gao Minghui. Bulking Characteristics of Potato Tubers and Its Correlation with Tuber Fresh Weight [J]. Crops, 2021, 37(2): 130-134.
[12] Zhou Yuexia, Fan Yu, Ruan Jingjun, Yan Jun, Lai Dili, Peng Yan, Tang Yong, Weng Wenfeng, Cheng Jianping. Correlation Analysis of Oat Grain Nutrition and Agronomic Traits [J]. Crops, 2021, 37(2): 165-172.
[13] Jin Jiangang, Tian Zaifang. Grey Correlation Analysis of Introduced Tartary Buckwheat in the Northern Shanxi [J]. Crops, 2021, 37(2): 52-56.
[14] Zhou Qilong. Grey Relational Grade Evaluation of 19 Oat Varieties Introduced in Ali of Tibet [J]. Crops, 2021, 37(1): 26-31.
[15] Liu Zhenxing, Zhou Guimei, Ya Xiuxiu, Chen Jian, Meng Qingxiang, He Guoqing. Effects of Different Sowing Densities on the Morphological Traits and Yields of Three Adzuki Bean Varieties [J]. Crops, 2020, 36(6): 137-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!