Crops ›› 2022, Vol. 38 ›› Issue (3): 125-133.doi: 10.16035/j.issn.1001-7283.2022.03.018

Previous Articles     Next Articles

Effects of Water-Nitrogen Interaction on Physiological Parameters and Yield Formation of Different Wheat Varieties

Dong Weixin1(), Zhang Yuechen2()   

  1. 1Hebei Open University, Shijiazhuang 050080, Hebei, China
    2College of Agronomy, Hebei Agricultural University/State Key Laboratory for Crop Improvement and Regulation in North China, Baoding 071001, Hebei, China
  • Received:2021-03-13 Revised:2021-08-09 Online:2022-06-15 Published:2022-06-20
  • Contact: Zhang Yuechen E-mail:dongweixin.yuxin@163.com;zhangyc1964@163.com

Abstract:

To investigate a reasonable water-nitrogen interaction model at mountain front plain area in Hebei province and provide theoretical support for wheat development in that location, the influence of water-nitrogen interaction on physiological parameters and yield formation of different wheat varieties using Jimai 22 (JM-22) and Gaoyou 2018 (GY-2018) as materials were investigated and GD/GS, ZD/GS, DD/GS, GD/ZS, ZD/ZS, DD/ZS, GD/DS, ZD/DS, and DD/DS nine treatments were set. The results showed that with the increasing of water nitrogen, plant height, flag leaf area and aboveground dry weight became larger, flag leaf area was the largest under ZD treatment in maturation stage, GS>ZS>DS, moreover, plant growth and dry matter accumulation of GY-2018 were higher than that of JM-22. In addition, the more water and nitrogen, the greater SPAD value of two varieties and then each treatment showed GD>ZD>DD, while GS, ZS and DS had no distinct change in three stages, SPAD value of JM-22 was large. Soluble protein and sugar contents were showed GD>ZD>DD, but the highest in the later stage was ZD treatment, GS>ZS>DS, furthermore, GY-2018 was more conducive to carbohydrate accumulation than that of JM-22. Malonyldialdehyde and reactive oxygen contents decreased with the increasing of nitrogen application, but superoxide dismutase and peroxidase enzyme activities increased, however, the changes of enzyme activities at different stages were different with different irrigation amount, GY-2018 was higher, which was helpful to delay senescence of leaves in later stage. The yield and its components showed the highest under ZD treatment, and GS>ZS>DS, besides JM-22 nitrogen fertilizer production efficiency and water use efficiency under ZD/GS treatment was the highest, and with the highest yield of 9927.78kg/ha, which increased 10.07% compared with GY-2018. From these results, it was concluded that ZD/GS (210kg/ha, 1200m3/ha) was the most suitable mode of water and nitrogen interaction.

Key words: Wheat, Water-nitrogen interactions, Growth characteristics, Physiological parameters, Yield formation

Table 1

Effects of water-nitrogen interaction on plant height, flag leaf area and dry weight of aboveground of wheat"

指标
Index
处理
Treatment
JM-22 GY-2018
开花期
Flowering
stage
灌浆期
Filling
stage
成熟期
Maturation
stage
开花期
Flowering
stage
灌浆期
Filling
stage
成熟期
Maturation
stage
株高
Plant height (cm)
GD/GS 79.58±7.11a 81.28±5.86a 83.44±3.82a 83.00±2.31a 83.07±4.26a 83.67±3.21a
ZD/GS 79.17±2.55a 80.39±3.33ab 80.61±3.15b 81.50±3.67ab 81.67±2.71a 81.95±2.67ab
DD/GS 79.06±5.39a 80.06±2.88ab 80.22±3.69b 79.17±2.51d 80.28±2.65a 80.78±2.79bc
GD/ZS 78.89±3.38a 79.89±2.61ab 79.67±3.65b 82.61±3.45a 82.67±4.00a 82.78±3.59a
ZD/ZS 78.00±3.38a 79.56±2.36ab 79.11±3.23bc 82.57±3.05a 82.64±2.38a 82.75±2.95a
DD/ZS 78.61±3.29a 77.83±3.88b 78.28±2.87bcd 82.56±3.17a 82.22±1.83a 81.62±2.48ab
GD/DS 78.44±2.18a 79.67±3.66ab 78.67±2.95bcd 81.28±2.63abc 81.50±3.29a 81.78±1.48a
ZD/DS 77.89±4.11a 78.89±2.42ab 77.11±2.89cd 80.22±2.91bcd 80.74±2.91a 80.77±3.09bc
DD/DS 77.56±2.79a 78.28±5.89ab 76.28±5.14d 79.28±2.24cd 80.67±2.99a 78.83±3.62c
旗叶面积
Flag leaf area (cm2)
GD/GS 15.98±3.25a 16.42±2.48a 17.03±3.63ab 18.35±3.18a 18.96±4.08a 19.53±2.85a
ZD/GS 15.83±3.31a 16.61±2.39a 19.81±4.05a 17.31±2.91ab 18.57±3.49a 19.92±3.66a
DD/GS 15.21±2.66a 15.22±4.03a 16.97±3.11ab 16.81±2.91ab 18.49±2.87a 18.91±3.13ab
GD/ZS 15.31±2.20a 16.31±3.01a 17.79±4.76ab 18.35±2.62a 18.89±4.25a 19.91±3.52a
ZD/ZS 15.06±3.77a 16.20±3.50a 19.21±3.45a 17.79±4.64ab 17.99±4.41a 19.19±2.47ab
DD/ZS 14.15±3.69a 15.28±4.14a 15.40±3.44b 17.41±4.45ab 17.96±2.86a 18.63±2.86ab
GD/DS 15.73±3.67a 16.51±2.56a 17.89±3.68ab 17.35±3.29ab 17.64±3.75a 17.77±3.94b
ZD/DS 15.23±4.12a 16.19±4.01a 18.12±3.21ab 16.81±3.79ab 17.69±4.51a 18.47±4.58ab
DD/DS 14.84±3.55a 15.98±3.49a 15.91±4.10ab 15.93±3.38b 16.98±3.64a 17.22±2.41b
地上部干重
Dry weight of aboveground (g)
GD/GS 2.49±0.02a 4.59±1.21a 6.16±0.89a 4.31±0.67a 5.69±0.29a 7.29±1.51a
ZD/GS 2.34±0.53a 4.11±0.39a 6.05±0.17a 3.91±0.51a 5.17±0.56ab 6.92±1.03a
DD/GS 2.29±0.25a 4.09±0.18a 5.49±0.37a 3.88±0.89a 4.46±0.67bc 6.75±1.79a
GD/ZS 2.34±0.35a 4.08±0.27a 5.44±0.68a 3.48±0.37ab 4.24±1.21bc 6.47±0.98a
ZD/ZS 2.11±0.39a 3.93±0.57a 5.33±0.17a 2.78±0.52bc 4.21±0.49bc 6.25±0.19a
DD/ZS 2.09±0.26a 3.84±0.38a 5.23±0.59a 2.69±0.33bc 4.08±0.29bc 6.22±1.36a
GD/DS 2.06±0.38a 3.48±0.89a 5.21±0.82a 2.29±0.19c 3.90±0.88c 6.11±0.51a
ZD/DS 1.97±0.41a 3.47±0.98a 5.08±1.08a 2.14±0.14c 3.75±0.59c 5.82±0.75a
DD/DS 1.94±0.02a 3.33±0.31a 5.01±1.07a 2.11±0.46c 3.68±0.61c 5.59±0.27a

Fig.1

Effects of water-nitrogen interaction on SPAD of wheat flag leaf The different lowercase letters indicate significant difference at 0.05 level, the same below"

Fig.2

Effects of water-nitrogen interaction on the contents of soluble protein and soluble sugar of wheat flag leaf"

Fig.3

Effects of water-nitrogen interaction on activities of SOD and POD of wheat flag leaf"

Fig.4

Effects of water-nitrogen interaction on contents of MDA and ROS of wheat flag leaf"

Table 2

Effects of water-nitrogen interaction and mutual action effect of different factors on yield and its components in wheat"

品种
Variety
处理
Treatment
穗数
Spike number
(×104/hm2)
穗粒数
Grain number
per spike
穗粒重
Grain weight
per spike(g)
千粒重
1000- grain
weight (g)
产量
Yield
(kg/hm2)
JM-22 GD/GS 761.14±122.71d 34.4±4.99abc 1.77±0.26ab 50.43±2.12ab 9483.34±543.35abc
ZD/GS 876.87±68.93bcd 36.2±7.42a 1.87±0.41a 54.80±3.61a 9927.78±618.43a
DD/GS 803.43±20.39cd 34.7±4.02ab 1.71±0.22ab 48.43±1.78abc 9261.12±823.17abc
GD/ZS 815.67±57.27bcd 29.7±3.09c 1.49±0.28bc 46.70±4.35bc 9261.12±504.23abc
ZD/ZS 879.09±72.01bcd 33.8±3.26abc 1.61±0.31abc 49.97±1.33ab 9816.67±301.11ab
DD/ZS 763.37±44.46cd 31.2±3.46bc 1.46±0.24bc 42.83±1.69bc 9038.89±613.23abcd
GD/DS 931.39±33.88ab 31.3±3.19bc 1.46±0.19bc 45.03±6.02bc 8816.67±315.66bcd
ZD/DS 1021.53±85.18a 31.5±6.47abc 1.54±0.27bc 48.77±2.45abc 8705.56±334.21cd
DD/DS 886.88±75.12bc 30.7±4.11bc 1.39±0.29c 41.13±7.68c 8038.89±314.31d
GY-2018 GD/GS 1159.52±100.01ab 29.4±4.88ab 1.58±0.18ab 51.60±1.51a 8816.67±314.41a
ZD/GS 1187.33±141.96a 33.0±6.15a 1.61±0.32a 53.00±2.61a 8927.78±408.35a
DD/GS 921.38±53.73c 28.8±3.58ab 1.48±0.21abc 50.83±1.55a 8594.46±334.31a
GD/ZS 1003.73±36.77abc 30.2±3.33a 1.49±0.22abc 48.53±0.83ab 8372.23±314.31ab
ZD/ZS 1015.97±138.46abc 31.4±5.99a 1.51±0.32abc 51.37±1.96a 8483.34±303.22ab
DD/ZS 954.76±157.43bc 27.7±4.64ab 1.45±0.21abc 46.40±5.41ab 8261.12±539.21ab
GD/DS 949.19±117.99bc 26.8±3.46ab 1.29±0.31c 47.40±5.65ab 7261.12±519.21bc
ZD/DS 992.59±34.26abc 28.7±6.21ab 1.33±0.24bc 49.53±1.33ab 7816.64±467.56ab
DD/DS 925.83±132.12c 23.9±4.78b 1.04±0.40d 44.00±4.73b 6483.34±348.37c
变量来源
Variable source
品种 *** *** ** ns ***
ns *** ** *** ***
** * ns *** **
品种×水 ** ns ns ns ns
品种×氮 ns ns ns ns ns
水×氮 ns ** ** * **
品种×水×氮 ns ns ns ns ns

Fig.5

Effects of water-nitrogen interaction on nitrogen fertilizer production efficiency and water use efficiency of wheat"

[1] Yang X L, Gao W S, Shi Q H, et al. Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region. Agricultural Water Management, 2013, 124(2):20-27.
doi: 10.1016/j.agwat.2013.03.017
[2] 宋先松, 石培基, 金蓉. 中国水资源空间分布不均引发的供需矛盾分析. 干旱区研究, 2005, 22(2):162-166.
[3] 串丽敏, 何萍, 赵同科, 等. 中国小麦季氮素养分循环与平衡特征. 应用生态学报, 2015, 26(1):76-86.
[4] 赵连佳, 薛丽华, 孙乾坤, 等. 不同水氮处理对滴灌冬小麦田耗水特性及水氮利用效率的影响. 麦类作物学报, 2016, 36(8):1050-1059.
[5] 丁继君, 栗丽, 王旭钰. 水肥藕合对冬小麦生长和产量的影响. 山西水土保持科技, 2014(4):12-14.
[6] 王磊, 董树亭, 刘鹏, 等. 水氮互作对冬小麦光合生理特性和产量的影响. 水土保持学报, 2018, 32(3):301-308.
[7] 吕广德, 王超, 靳雪梅, 等. 水氮互作对冬小麦干物质及氮素积累和产量的影响. 应用生态学报, 2020, 3(5):1-13.
[8] 赵芳华, 张树华, 郭程瑾, 等. 限水灌溉下春季追氮方式对小麦旗叶光合和衰老特性的影响. 植物营养与肥料学报, 2009, 15(2):247-254.
[9] 冉文星. 滴灌小麦水氮耦合的生理调控效应研究. 阿拉尔:塔里木大学, 2016.
[10] 董博, 于显枫, 张绪成, 等. 水氮互作对春小麦植株养分含量及产量的影响. 西北农业学报, 2011, 20(6):90-95.
[11] 曹勇, 姬虎太, 裴雪霞, 等. 水氮运筹对中筋冬小麦‘临Y7287’产量和品质的影响. 中国农学通报, 2016, 32(27):42-46.
[12] Read S M, Northcote D H. Minimization of variation in the response to different proteins of the coomassie blue G dye-binding assay for protein. Analytical Biochemistry, 1981, 116(1):53-64.
pmid: 7304986
[13] 白宝璋, 靳占忠, 李存东. 植物生理学试验教程. 北京: 中国农业科技出版社, 1996:61-62.
[14] 韩胜芳, 邓若磊, 徐海荣, 等. 缺磷条件下不同磷效率水稻品种光合特性和细胞保护酶活性. 应用生态学报, 2007, 18(11):2462-2467.
[15] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000.
[16] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase,ascorbate peroxidate and glutathione ruductase in bean leaves. Plant Physiology, 1992, 98:1222-1227.
doi: 10.1104/pp.98.4.1222 pmid: 16668779
[17] 董博, 于显枫, 郭天文, 等. 水氮互作对春小麦不同生育期植株性状及产量的影响. 甘肃农业科技, 2011(1):5-9.
[18] 金修宽, 赵同科. 测墒补灌和施氮对冬小麦产量及氮素吸收分配的影响. 水土保持学报, 2017, 31(2):233-239.
[19] 谷艳芳, 丁圣彦, 高志英, 等. 干旱胁迫下冬小麦光合产物分配格局及其与产量的关系. 生态学报, 2010, 30(5):1167-1173.
[20] 郭丽. 水氮耦合对冬小麦―夏玉米生理特性及产量影响的研究. 保定:河北农业大学, 2010.
[21] 于显枫. 水氮互作对小麦生理特性及产量的影响. 兰州:甘肃农业大学, 2008.
[22] 周萍, 陈志国, 庄丽, 等. 水氮互作对滴灌春小麦渗透调节物及产量的影响. 石河子大学学报(自然科学版), 2013, 31(4):425-429.
[23] 王小燕, 王东, 于振文. 水氮互作对小麦旗叶光合特性、籽粒产量及氮素和水分利用率的影响. 干旱地区农业研究, 2009, 27(6):17-22.
[24] Pan F F, Li H, Li P P, et al. Effects of supplemental irrigation based on testing soil moisture and nitrogen fertilization amount on the yield and nitrogen uptake of winter wheat. Agricultural Science and Technology, 2014, 15(5):817-820,823.
[25] 黄玲, 杨文平, 胡喜巧, 等. 水氮互作对冬小麦耗水特性和氮素利用的影响. 水土保持学报, 2016, 30(2):168-174.
[1] Sun Yunchao, Peng Keyan, Feng Shengye, Ji Chuanyun, Lü peng, Ju Zhengchun. Effects of Row Spacing and Seedling Belt Width on Dry Matter Accumulation and Distribution of Wheat in Wide Refined Sowing [J]. Crops, 2022, 38(5): 130-134.
[2] Wang Yan, Li Tingyou, Wang Dou, Li Jiawei, Peng Wenlu, Rui Haiyun. Effects of Isosteviol on Growth of Wheat Seedlings under Salt Stress [J]. Crops, 2022, 38(5): 141-145.
[3] Chang Haigang, Li Guang, Yuan Jianyu, Xie Mingjun, Qi Xiaoping. Effects of Different Fertilization Methods on Soil Nutrients and Yield of Spring Wheat in the Loess Hilly Region of Central Gansu Province [J]. Crops, 2022, 38(5): 160-166.
[4] Ge Changbin, Qin Suyan, Huang Jie, Cao Yanyan, Liao Pingʼan. Effects of Tillage Methods on Fusarium Head Blight and Yield of Wheat [J]. Crops, 2022, 38(5): 235-240.
[5] Li Ning, Liu Tongtong, Yang Jinwen, Shi Yugang, Wang Shuguang, Sun Daizhen. Analysis of Physiological Differences of Wheat Varieties with Different Nitrogen Use Efficiency [J]. Crops, 2022, 38(5): 87-96.
[6] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[7] Yu Guoyi, Kong Lingcong, Zhang Liang, Wei Zhi, Wang Yongjiu, Wang Zhi, Du Xiangbei. Effects of Different New Type Fertilizers on Wheat Photosynthetic Characteristics, Canopy Structure and Yield [J]. Crops, 2022, 38(4): 193-198.
[8] Zhou Jihong, Wang Junying, Meng Fanyu, Tong Guoxiang, Mei Li, Liu Guoming, Wang Yan, Luo Jun, Xie Chunyuan. Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat [J]. Crops, 2022, 38(4): 199-204.
[9] Liang Weiqin, Jia Li, Guo Liming, Li Yinglan, Hu Yafeng, Chen Xiaohua, Ma Xufeng, Li Jing. Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat [J]. Crops, 2022, 38(4): 242-248.
[10] Jian Juntao, Wang Qinghua, Yang Hui, Liu Jun, Zhu Chuanjie, Li Yupeng, Zhang Bin, Zhang Zhen, Quan Honglei, Xie Yanzhou, Wang Chengshe. Utilization of New Wheat Varieties (Lines) from Southern Huanghuai in Nanyang Basin-Transitional Ecological Area [J]. Crops, 2022, 38(4): 46-53.
[11] Song Quanhao, Jin Yan, Song Jiajing, Chen Jie, Zhao Lishang, Bai Dong, Chen Liang, Zhu Tongquan. Comprehensive Evaluation of 35 Synthetic Hexaploid Wheat Cultivars [J]. Crops, 2022, 38(4): 69-76.
[12] Hu Dan. Genetic Analysis of Culm Gravity Height and Snapping Resistance in Common Buckwheat [J]. Crops, 2022, 38(4): 83-89.
[13] Shi Xian, Li Hongyou, Lu Bingyue, Zhou Yun, Zhao Jiju, Zhao Mengli, Liang Jing, Meng Hengling. Physiological Responses of Three Tartary Buckwheat Varieties to Salt Stress and Evaluation of Salt Tolerance [J]. Crops, 2022, 38(3): 149-154.
[14] Pan Feifei, Tang Jiao, Sun Zhuang, Chen Bihua, Wang Guangyin, Wu Dafu, Wang Wei. Effects of Biogas Slurry Instead of Chemical Fertilizer on Winter Wheat Yield [J]. Crops, 2022, 38(3): 174-180.
[15] Zhang Zihao, Fu Penghao, Li Xiangcheng, Wu Haotian, Gao Chunbao, Zhang Yunbo, Wang Qi’e, Xiao Sen, Tang Haojun, Zou Juan. Current Situation and Analysis of Wheat Production in Jianghan Plain—— A Case Study of Tianmen, Hubei Province [J]. Crops, 2022, 38(3): 39-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!