Crops ›› 2022, Vol. 38 ›› Issue (6): 193-200.doi: 10.16035/j.issn.1001-7283.2022.06.028

Previous Articles     Next Articles

Effects of Fertilizing with Straw Biochar on Soil pH and Root Growth of Flue-Cured Tobacco in Huayuan, Hunan

Zhang Mingfa1(), Zhang Sheng1(), Teng Kai1, Chen Qianfeng1, Tian Minghui1, Jiang Zhimin2, Chao Jin1, Jian Panfeng2, Deng Xiaohua3   

  1. 1Production Technique Center, Xiangxi Tobacco Company, Jishou 416000, Hunan, China
    2China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310009, Zhejiang, China
    3Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2021-07-07 Revised:2021-09-26 Online:2022-12-15 Published:2022-12-21
  • Contact: Zhang Sheng E-mail:zhangmingfa98@163.com;zhangsh27@126.com

Abstract:

In Huayuan, a three years fixed-site field experiment was conducted to examine the effects of varying economic amount of straw biochar (0, 3000, 3750 and 4500kg/ha) on soil pH and root development of the Yunyan 87 flue-cured tobacco variety. The findings indicated that the soil pH was incresed with straw biochar treat, and the soil pH showed the trend of increasing with the increase of aplication amount and the extension of transplanting time. The deeper hierarchy responded more slowly and the predominant affection region was in areas 0-10cm away from the stem in horizontal direction. Treatments with 3750 and 4500kg/ha reduced hydrolytic acid by 1.92% and 3.21%, respectively. The straw biochar treat effected tobacco roots distribution was mainly in the area of 0-20cm away from stem horizontally, and 0-30cm away from stem vertically. Straw biochar mainly affected the soil pH value, and did not change the overall distribution of tobacco root but regulated root development status effectively, especially in the areas of 0-10 and 20-30cm away from stem in vertical direction and 0-10cm away from stem in horizontal direction. The economic appropriate amount of straw biochar was 3750-4500kg/ha in Huayuan purple soil. This study offers the theoretical reference for economical appropriate application of straw biochar.

Key words: Straw biochar, Economic amount, Purple soil, Soil pH, Flue-cured tobacco, Root growth

Table 1

The preparation parameters and basic physicochemical properties of biochar were tested cm"

项目
Item
材料
Material
pH 制备参数
The preparation parameters
比表面积
Specific area (m2/g)
C
(%)
N
(%)
NH4+-N
(mg/kg)
NO3--N
(mg/kg)
1 玉米秸秆Corn stalk 10.78 终温450℃,保温95min 2.88 55.30 1.14 31.30
2 油菜秸秆Rapeseed stalk 10.30 终温450℃,保温95min 1.45 58.45 3.67 6.80 12.90
3 水稻秸秆Rice stalk 10.71 终温450℃,保温95min 7.63 47.06 0.64 39.00
4 无花果秸秆Fig stalk 10.94 终温450℃,保温95min 1.72 65.96 1.92 9.80 10.40

Fig.1

Content of hydrolytic acid of soil under different treatments The same lowercase letters indicates no significant difference at 0.05 level among different treatments"

Fig.2

Rhizosphere soil pH of biochar treatments in different periods Different uppercase letters indicate extremely significant difference at the 0.01 level, and different lowercase letters indicate significant difference at the 0.05 level, the same below"

Table 2

Rhizosphere soil pH distribution at different height in vertical direction"

根系层次
Root layer (cm)
处理
Treatment
移栽后天数Days after transplanting
15d 30d 45d 60d 75d 90d 105d
0~10 T1 6.11±0.56abA 6.19±0.53abA 6.61±0.55abA 6.68±0.49abA 6.73±0.47aA 6.76±0.45aA 6.79±0.43aA
T2 6.47±0.42aA 6.53±0.41abA 6.89±0.40aA 6.91±0.38abA 7.04±0.35aA 7.08±0.35aA 7.09±0.33aA
T3 7.06±0.26aA 7.14±0.25aA 7.40±0.22aA 7.52±0.20aA 7.67±0.18aA 7.69±0.15aA 7.71±0.13aA
CK 5.89±0.66bA 5.83±0.64bA 5.80±0.61bA 5.67±0.70bA 5.54±0.71aA 5.42±0.71bA 5.39±0.73bA
10~20 T1 5.93±0.49bA 6.01±0.47abA 6.13±0.48abA 6.28±0.46abA 6.53±0.45aA 6.55±0.47aA 6.56±0.46aA
T2 6.28±0.34aA 6.34±0.35aA 6.41±0.36aA 6.62±0.30abA 6.86±0.30aA 6.90±0.31aA 6.91±0.29aA
T3 6.85±0.23aA 6.91±0.24aA 7.02±0.25aA 7.21±0.20aA 7.46±0.19aA 7.49±0.18aA 7.51±0.16aA
CK 5.72±0.61bA 5.66±0.59bA 5.63±0.60bA 5.50±0.58bA 5.38±0.55bA 5.26±0.51bA 5.20±0.49bA
20~30 T1 5.63±0.45abA 5.70±0.46abA 5.90±0.45abA 6.03±0.42aA 6.29±0.44aA 6.31±0.45aA 6.33±0.44aA
T2 5.97±0.31abA 6.02±0.30aA 6.13±0.32aA 6.28±0.30aA 6.49±0.31aA 6.51±0.29aA 6.53±0.30aA
T3 6.51±0.19aA 6.58±0.18aA 6.73±0.20aA 6.86±0.18aA 7.01±0.19aA 7.03±0.17aA 7.05±0.18aA
CK 5.43±0.58bA 5.38±0.59bA 5.35±0.60bA 5.23±0.57bA 5.11±0.58bA 5.00±0.50bA 4.85±0.51bA
30~40 T1 6.23±0.42abA 6.25±0.44bA 6.24±0.43abA 6.33±0.40aA 6.39±0.39abA 6.58±0.38aA 6.80±0.39aA
T2 6.60±0.29aA 6.62±0.31aA 6.63±0.30abA 6.68±0.28aA 6.69±0.29aA 6.71±0.27aA 6.71±0.27aA
T3 7.06±0.16aA 7.10±0.17aA 7.12±0.16aA 7.18±0.17aA 7.31±0.16aA 7.33±0.16aA 7.35±0.15aA
CK 6.01±0.51bA 5.95±0.52bA 5.91±0.53bA 5.88±0.51bA 5.85±0.50bA 5.65±0.49bA 5.37±0.50bA

Table 3

Rhizosphere soil pH at different root layers in horizontal direction"

根系层次
Root layers (cm)
处理
Treatment
移栽后天数Days after transplanting
15d 30d 45d 60d 75d 90d 105d
0~10 T1 5.94±0.50abA 6.12±0.51abA 6.43±0.53abA 6.59±0.51bA 6.68±0.49aA 6.69±0.47aA 6.73±0.45aA
T2 6.29±0.46aA 6.35±0.49aA 6.60±0.48abA 6.63±0.45bA 6.72±0.42aA 6.76±0.43aA 6.83±0.41aA
T3 6.86±0.40aA 6.90±0.41aA 6.99±0.43aA 7.10±0.39aA 7.11±0.37aA 7.21±0.36aA 7.29±0.32aA
CK 5.73±0.59bA 5.67±0.60bA 5.64±0.61bA 5.51±0.58cA 5.39±0.57bA 5.27±0.56bA 5.12±0.53bA
10~20 T1 5.99±0.52bA 6.08±0.54abA 6.18±0.55abA 6.22±0.53abA 6.49±0.51abA 6.63±0.50bA 5.58±0.48bA
T2 6.34±0.47aA 6.38±0.48abA 6.49±0.50aA 6.58±0.48aA 6.87±0.46aA 7.11±0.44aA 7.12±0.43aA
T3 6.92±0.42aA 7.00±0.44aA 7.09±0.46aA 7.12±0.45aA 7.33±0.43aA 7.56±0.42aA 7.58±0.40aA
CK 5.78±0.60bA 5.72±0.63aA 5.69±0.65bA 5.56±0.62bA 5.43±0.60bA 5.31±0.58cA 5.16±0.56cA
20~30 T1 6.04±0.55bA 6.05±0.58abA 6.04±0.60bA 6.21±0.57aA 6.32±0.55abA 6.38±0.54abA 6.39±0.52abA
T2 6.40±0.49aA 6.41±0.51abA 6.42±0.53aA 6.61±0.52aA 6.62±0.49abA 6.66±0.44abA 6.68±0.43abA
T3 6.98±0.43aA 7.00±0.44aA 7.02±0.46aA 7.22±0.43aA 7.26±0.40aA 7.29±0.36aA 7.31±0.31aA
CK 5.83±0.59bA 5.77±0.62bA 5.74±0.66bA 5.60±0.63bA 5.48±0.61bA 5.36±0.60bA 5.21±0.57bA

Fig.3

Change in the biomass of 0-10cm away from stem in vertical direction under treatments in different periods"

Table 4

The proportion of root dry weight in the vertical direction to the total roots"

根系层次
Root layer (cm)
处理
Treatment
移栽后天数Days after transplanting
15d 30d 45d 60d 75d 90d 105d
0~10 T1 0.338aA 0.449aA 0.415aA 0.283aA 0.219abA 0.155bA 0.135bA
T2 0.342aA 0.388aA 0.347aA 0.227aA 0.208abA 0.191abA 0.184bA
T3 0.460aA 0.331aA 0.205aA 0.337aA 0.340aA 0.331aA 0.304aA
CK 0.336aA 0.369aA 0.378aA 0.244aA 0.188bA 0.165bA 0.145bA
10~20 T1 0.471aA 0.290aA 0.258aA 0.417aA 0.363aA 0.408abA 0.412abA
T2 0.545aA 0.445aA 0.376aA 0.399aA 0.412aA 0.463aA 0.374abA
T3 0.458aA 0.331aA 0.205aA 0.337aA 0.340aA 0.351bA 0.304bA
CK 0.464aA 0.365aA 0.387aA 0.368aA 0.488aA 0.468aA 0.441aA
20~30 T1 0.183aA 0.245aA 0.214aA 0.206aA 0.283aA 0.330aA 0.317aA
T2 0.110aA 0.162aA 0.195aA 0.295aA 0.265aA 0.258aA 0.337aA
T3 0.072abA 0.336aA 0.236aA 0.279aA 0.284aA 0.395aA 0.399aA
CK 0.199aA 0.253aA 0.149aA 0.251aA 0.204aA 0.268aA 0.301aA
30~40 T1 0.008aA 0.006aA 0.103abA 0.084aA 0.125aA 0.097aA 0.128aA
T2 0.003bA 0.005aA 0.082abA 0.079aA 0.115aA 0.088aA 0.105aA
T3 0.010aA 0.009aA 0.176aA 0.160aA 0.153aA 0.091aA 0.116aA
CK 0.001cA 0.003aA 0.075bA 0.127aA 0.110aA 0.088aA 0.104aA

Fig.4

Change in the biomass of 10-20cm away from stem in vertical direction under treatments in different periods"

Fig.5

Change in the biomass of 20-30cm away from stem in vertical direction under treatments in different periods"

Fig.6

Root dry weight in areas 0-30cm away from stem in horizontal direction"

Table 5

Correlation factor between amount of biochar and soil pH value and dry weight of root"

项目
Item
土壤层次
Soil layer (cm)
生物炭用量Amount of biochar
移栽后45d
45d after transplanting
移栽后60d
60d after transplanting
移栽后75d
75d after transplanting
水平层次土壤pH
Soil pH value at horizontal layers
0~10 0.8723** 0.9050** 0.9197**
10~20 0.3311 0.2689 0.0881
水平层次根干重
Dry weight of root at horizontal layers
0~10 0.1945 0.2230 0.7152**
10~20 0.0328 0.1310 0.2412
垂直层次土壤pH
Soil pH value at vertical layers
0~10 0.9911** 0.9674** 0.8060**
10~20 0.9933** 0.9933** 0.9553**
20~30 0.9908** 0.9964** 0.9538**
垂直层次根干重
Dry weight of root at vertical layers
0~10 0.9365** 0.9695** 0.9855**
10~20 0.3229 0.5154** 0.6479**
20~30 0.2819 0.2927 0.4280*

Table 6

Path analysis of amount of biochar and soil pH value and dry weight of root"

垂直层次
Vertical
layer (cm)
项目
Item
直接作用
Direct
effect
间接作用
Indirect
effect
作用总和
Total
effect
0~10 pH 0.8121 0.0803 0.8924
根干重 0.2758 0.2362 0.5121
10~20 pH 0.8596 0.0588 0.9183
根干重 0.2547 0.1983 0.4530
20~30 pH 0.8211 0.0680 0.8891
根干重 0.1373 0.4068 0.5441
[1] Qian Q Y, Bi Q L, Qiong N, et al. Temporal physicochemical changes and transformation of biochar in a rice paddy:Insights from a 9-year field experiment. Science of the Total Environment, 2020, 345:370-376.
[2] 刘美菊, 李江舟, 计思贵, 等. 生物炭对山坡地烟叶产量和氮肥利用效率的影响效果评价. 作物杂志, 2020(1):89-97.
[3] Zhao Y, Zhen Z, Wang Z H, et al. Influence of environmental factors on arnseic accumulation and biotransformation using the aquatic plant species hydrilla verticillata. Journal of Environmental Sciences, 2020, 90(4):244-252.
doi: 10.1016/j.jes.2019.12.010
[4] 马新明, 席磊, 熊淑萍, 等. 大田期烟草根系构型参数的动态变化. 应用生态学报, 2006, 17(3):373-376.
[5] 廖红, 戈振场, 严小龙. 水磷耦合胁迫下植物磷吸收的理想根构型:模拟与应用. 科学通报, 2001, 46(8):641-646.
[6] 李明, 李忠佩, 刘明, 等. 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响. 中国农业科学, 2015, 48(7):1361-1369.
[7] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999:166-187.
[8] 张常兴, 马波波, 商悦名, 等. 不同垄作方式与覆膜厚度对烤烟根系生长发育的影响. 山东农业科学, 2017, 49(5):52-56.
[9] 刘棋, 王津军, 封幸兵, 等. 耕作方式对山地烟田土壤物理性状及烤烟根系空间分布的影响. 中国生态农业学报(中英文), 2019, 27(11):1673-1681.
[10] 刘先良, 张春, 邓茂, 等. 施用生物炭和AM 真菌对烤烟根系形态、生理特性及化学成分的影响. 烟草科技, 2017, 50(8):30-36.
[11] 郑加玉, 张忠锋, 程森, 等. 稻壳生物炭对整治烟田土壤养分及烟叶产质量的影响. 中国烟草科学, 2016-08, 37(4):6-12.
[12] 张继旭, 张继光, 张忠锋, 等. 秸秆生物炭对烤烟生长发育、土壤有机碳及酶活性的影响. 中国烟草科学, 2016, 37(5):16-21.
[13] 张广雨, 褚德朋, 刘元德, 等. 生物炭及海藻肥对烟草生长、土壤性状及青枯病发生的影响. 中国烟草科学, 2019, 40(5):15-18.
[14] Le H, Man N J, Rillig M C, et al. Biochar effects on soil biota-a review. Soil Biology and Biochemistry, 2011, 43:1812-1836.
doi: 10.1016/j.soilbio.2011.04.022
[15] Major J, Rondon M, Molina D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 2010, 333:117-128.
doi: 10.1007/s11104-010-0327-0
[16] 陈懿, 陈伟, 高维常, 等. 烟秆生物炭对烤烟根系生长的影响及其作用机理. 烟草科技, 2017, 50(6):26-31.
[17] 于晓娜, 周涵君, 张晓帆, 等. 基于盆栽试验的施用烟秆生物炭对植烟土壤呼吸速率的影响. 烟草科技, 2017, 50(12):29-37.
[18] Jeffer Y S, Verheijenf G A, Velde M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture,Ecosystems and Environment, 2011, 144:175-187.
doi: 10.1016/j.agee.2011.08.015
[19] Kammann C I, Linsel S, Ling J W, et al. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant and Soil, 2011, 345(1/2):195-210.
doi: 10.1007/s11104-011-0771-5
[20] 张星, 刘杏认, 林国林, 等. 生物炭和秸秆对华北农田表层土壤矿质氮和pH的影响. 中国农业气象, 2016, 37(2):131-142.
[21] 张雯, 耿增超, 陈心想, 等. 生物质炭对盐土改良效应研究. 干旱地区农业研究, 2013, 31(2):73-77,105.
[22] 张祥, 王典, 姜存仓, 等. 生物炭对我国南方红壤和黄棕壤理化性质的影响. 中国生态农业学报, 2013, 21(8):979-984.
[23] 王梅勋, 陈利军, 王家民, 等. 玉米秸秆生物炭对烟田褐土水分库容及烤烟生物量的影响. 土壤, 2015, 47(6):1076-1084.
[24] 赵亚鹏, 贾辉, 符云鹏, 等. 施用等碳量生物炭和腐熟秸秆对土壤养分及有机碳库的影响. 烟草科技, 2020, 53(1):12-20.
[25] 吴嘉楠, 彭桂新, 杨永锋, 等. 生物炭与氮肥配施对土壤生物特性和烤烟氮素吸收的影响. 中国烟草学报, 2018, 24(3):53-61.
[1] Chen Yan, Chen Qiang, He Yi, Yu Huiping, Gao Junyi, Zhao Erwei, Lu Yingang. Effects of Tobacco Planting Ecoregions, Varieties and Their Interactions on Polyphenol Content and Quality of Flue-Cured Tobacco [J]. Crops, 2022, 38(6): 132-138.
[2] Zhu Lin, Cao Xiang, Deng Xiaohua, Hu Risheng, Pei Xiaodong, Xiang Shipeng, Xiao Zhijun, Wang Weimin, Zhang Cheng, Jiang Zhimin. Characteristics of Water Loss and Pigment Degradation of Xiangyan No.7 Tobacco Leaves during Curing Process [J]. Crops, 2022, 38(5): 174-179.
[3] Jia Guotao, Zhang Junling, Wei Zhuangzhuang, Yuan Qishan, Wang Baolin, Wang Xiaoyu, Ma Shengtao, Yang Xinling, Zhang Ziying, Zhang Shiying, Jia Shiwei, Chen Yang, Liu Huimin. Research on the Regional Characteristics of Contents of Free Amino Acids in Flue-Cured Tobacco Based on Factor Analysis and Cluster Analysis [J]. Crops, 2022, 38(5): 208-214.
[4] Sun Kai, Liang Long, Li Zhongbai. Sustainability Evaluation of the Red Rice and Flue-Cured Tobacco Crop System Based on the Improved Emergy Model——A Case Study of Panzhou City, Guizhou Province [J]. Crops, 2022, 38(4): 146-153.
[5] Liu Xinya, Chen Xiaolong, Feng Yake, Liu Yang, Duan Weidong, An Xueqiang, Chen Fayuan, Cao Xingbing, Zhao Yuanyuan, Shi Hongzhi. Study on the Suitable Harvest Date of High Availability Upper Leaves of Flue-Cured Tobacco in Southwestern Guizhou [J]. Crops, 2022, 38(4): 227-235.
[6] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
[7] Yang Yingyue, Liu Hui, Wang Longfei, Zhao Zhe, Feng Xiaohu, Lai Miao, Zhao Mingqin. Effects of Different Fertilizer Types on Tobacco Planting Soil and Quality of Flue-Cured Tobacco [J]. Crops, 2022, 38(3): 187-193.
[8] Zhang Xiaoquan, Jia Zhenyu, Li Juxu, Li Hongchen, Wang Baoxiang, Wang Jian, Shi Gang, Wang Chuan, Wu Yunjie. Effects of Different Root-Promoting Practices on Potassium Metabolism at Mature Stage of Flue-Cured Tobacco in Southern Anhui [J]. Crops, 2022, 38(3): 205-210.
[9] Yun Fei, Ren Tianbao, Yin Quanyu, Jin Shuangzhen, Zheng Cong, Jin Lei, Li Jingjing, Liu Guoshun, Yang Xitian. Effects of Calcium by Foliage Spraying on Photosynthesis Physiology Characteristics of Flue-Cured Tobacco under Light Stress [J]. Crops, 2022, 38(2): 143-152.
[10] Wang Chuliang, Song Wenfeng, Guan Luohao, Xie Jin, Huang Hao, Li Wangyang, Wang Wei. Effects of Film Mulching Method and Transplanting Seedling Age on Yield and Quality of Flue-Cured Tobacco in Honghe [J]. Crops, 2021, 37(6): 95-100.
[11] Liu Wenlong, Ning Shanghui, Cao Mingfeng, Zhu Li, Gao Yuzhen, Zhang Xuewei, Wen Zixiang, Jiang Baodi, Jing Yanqiu, Deng Yong. Correlation Analysis of Soil Micronutrient and Chemical Components of Tobacco Leaves in Taoyuan County [J]. Crops, 2021, 37(5): 176-180.
[12] Zhang Jiuquan, Yu Xiangwen, Ling Aifen, Wang Yong, Li Leilei, Dong Jianxin. Optimal Specification of Tobacco Seedling Tray for Small Seedling Transplanting under Plastic Film [J]. Crops, 2021, 37(4): 123-129.
[13] Wang Kun, Wei Yuewei, Ji Xiaoming, Yun Fei, Zou Kai, Long Zhun. Effects of Combined Application of Biochar-Based Fertilizer and Trichoderma harzianum on the Qualities of Flue-Cured Tobacco and Tobacco-Growing Soil [J]. Crops, 2021, 37(3): 106-113.
[14] Wang Huifang, Zhang Xi, Feng Xiaohu, Li Yifan, Zhang Hong, Zhao Songchao, Zhao Mingqin. Effects of Different Plant Growth Regulators on the Growth and Development of Flue-Cured Tobacco [J]. Crops, 2021, 37(3): 173-177.
[15] Feng Xinwei, Huang Ying, Wu Guili, Gou Jianyu, Peng Yulong. Effects of Different Calcium Concentrations on Growth and Magnesium Absorption of Flue-Cured Tobacco [J]. Crops, 2021, 37(3): 190-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!