Crops ›› 2023, Vol. 39 ›› Issue (4): 136-143.doi: 10.16035/j.issn.1001-7283.2023.04.020

Previous Articles     Next Articles

Effects of Broccoli Waste Composting on Seedling Quality and Yield of Rice

Chen Jian(), Qi Wen, Jiang Hailing, Qian Zhongcang   

  1. Taizhou Academy of Agricultural Sciences, Linhai 317000, Zhejiang, China
  • Received:2023-03-21 Revised:2023-04-17 Online:2023-08-15 Published:2023-08-15

Abstract:

In order to improve the resource utilization rate of agricultural waste, rice husk and yellow mud were mixed with broccoli processing waste for fermentation, the compost and yellow mud were made into four kinds of substrates according to different mass ratios. The rice seedling quality and yield were studied to explore the feasibility of substrate application of broccoli waste. The results showed that the quality of rice seedlings, dry matter accumulation of seedlings, yield and other indicators increased first and then decreased with the increase of the proportion of compost in the matrix. When the mass ratio of yellow mud to compost was 1:1, the seedling raising effect was the best. The emergence rate, uniformity, root-shoot ratio and strong seedling index were 84.00%, 85.15%, 38.00% and 0.94, respectively. The rice yield was 7299.85kg/ha, and there was no significant difference compared with the conventional matrix treatment. It was predicted by establishing the regression equation that when the mass ratio of yellow mud to compost was 0.87:1, the seedling raising effect was the best. The substrate prepared by broccoli waste compost could basically achieve the seedling effect of conventional substrate, which was of great significance for the realization of low pollution and low emission ?broccoli-rice? circular agricultural production mode.

Key words: Broccoli waste, Composting, Substrate, Seedling quality, Yield

Table 1

Physical and chemical properties of substrates with different material proportion"

处理
Treatment
容重
Bulk density (g/cm3)
孔隙度
Porosity (%)
pH 有机质含量
Organic matter content (%)
总养分含量
Total nutrient content (%)
T1 0.89±0.02a 51.76±2.25c 6.15±0.28b 6.14±0.26d 1.02±0.08d
T2 0.78±0.01b 59.54±1.98b 6.58±0.17b 13.86±0.37c 1.53±0.04c
T3 0.60±0.02c 75.00±3.05a 6.80±0.31ab 25.41±0.59b 1.97±0.04b
T4 0.37±0.01d 85.31±3.34a 7.61±0.38a 38.71±0.44a 3.18±0.07a

Table 2

Survival rate of seedlings treated with different substrates %"

处理Treatment 1d 2d 3d 4d 5d 6d
CK1 100.00±0.00a 100.00±0.00a 74.18±2.95a 40.09±1.38a 10.61±1.18a 0.00±0.00a
CK2 100.00±0.00a 95.34±1.82a 38.66±3.17c 0.00±0.00d 0.00±0.00b 0.00±0.00a
T1 100.00±0.00a 97.15±2.23a 55.27±3.51b 11.82±2.57c 0.00±0.00b 0.00±0.00a
T2 100.00±0.00a 98.34±2.57a 60.45±2.23b 20.24±2.09b 3.76±0.97b 0.00±0.00a
T3 100.00±0.00a 100.00±0.00a 74.87±3.09a 37.84±1.37a 9.51±1.03a 0.00±0.00a
T4 100.00±0.00a 100.00±0.00a 75.27±2.17a 40.68±2.03a 11.08±1.14a 0.00±0.00a

Table 3

Effects of different substrates on quality of rice seedlings"

处理
Treatment
出苗率
Germination
rate (%)
叶龄
Leaf
age (d)
SPAD 株高
Plant height
(cm)
整齐度
Evenness
degree (%)
茎基宽
Stem base
width (cm)
根长
Root
length (cm)
单株白根数
White root number
per plant
CK1 86.33±2.77a 3.19±0.28ab 30.04±1.16a 13.38±1.41b 81.97±3.81a 0.19±0.01ab 11.73±1.95a 6.80±0.41a
CK2 58.33±3.06d 2.87±0.14b 21.43±1.41c 12.81±1.35b 81.67±4.03a 0.16±0.01c 7.33±1.31d 5.85±0.37b
T1 65.13±3.43c 2.98±0.11b 22.09±1.03c 12.89±1.09b 82.01±3.78a 0.16±0.01c 8.21±1.21c 6.02±0.49b
T2 78.65±3.09b 3.18±0.21ab 25.73±1.32b 13.14±1.13b 81.56±4.15a 0.18±0.01b 8.58±1.16c 6.31±0.52ab
T3 84.00±3.61ab 3.29±0.18a 27.17±1.02ab 15.05±1.24a 85.15±3.58a 0.20±0.01a 10.18±1.51b 6.50±0.48ab
T4 86.18±2.76a 3.14±0.18ab 24.87±1.13b 13.54±1.32b 85.34±3.77a 0.18±0.01b 9.93±1.87b 6.61±0.56ab

Table 4

Effects of different substrates on dry matter accumulation of rice seedlings"

处理
Treatment
单株地上部干重
The shoot dry weight
per plant (mg)
单株地下部干重
The root dry weight
per plant (mg)
全株干重
Dry weight per
plant (mg)
根冠比
Root-shoot
ratio (%)
壮苗指数
Robust seedling
index
CK1 1.72±0.13a 0.69±0.02a 2.41±0.11a 40.12±0.88a 1.00±0.06a
CK2 1.50±0.09b 0.55±0.01b 2.05±0.14b 36.67±0.93a 0.78±0.02c
T1 1.53±0.03b 0.58±0.01b 2.11±0.05b 37.91±1.09a 0.83±0.01bc
T2 1.65±0.11ab 0.61±0.01b 2.26±0.11ab 36.97±1.14a 0.87±0.01b
T3 1.75±0.11a 0.66±0.02ab 2.41±0.12a 38.00±0.96a 0.94±0.04ab
T4 1.70±0.06a 0.64±0.02ab 2.34±0.08a 37.65±1.21a 0.91±0.03ab

Table 5

Effects of different treatments on growth stages"

处理
Treatment
生育期(月-日)Growth stage (month-day) 播种至齐穗
Sowing-full
heading (d)
全生育期
Growth
duration (d)
播种期
Sowing
移栽期
Transplanting
始穗期
Initial heading
齐穗期
Full heading
成熟期
Maturity
CK1 03-19 04-18 06-10 06-12 07-12 85 115
CK2 03-19 04-18 06-12 06-14 07-14 87 117
T1 03-19 04-18 06-12 06-14 07-14 87 117
T2 03-19 04-18 06-11 06-13 07-13 86 116
T3 03-19 04-18 06-10 06-12 07-12 85 115
T4 03-19 04-18 06-11 06-13 07-13 86 116

Table 6

Effects of different substrates on yield and its components of rice"

处理
Treatment
株高
Plant height
(cm)
有效穗数
Effective panicles
number (×104/hm2)
穗粒数
Number of
grains per ear
结实率
Set-seeding
rate (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical
yield (kg/hm2)
实际产量
Actual yield
(kg/hm2)
CK1 101.43±1.29a 276.80±2.67a 127.16±2.35a 91.20±1.13a 26.21±0.26a 8403.10±136.15a 7416.75±156.04a
CK2 99.08±1.52a 240.12±3.36b 110.05±2.09b 92.03±1.25a 26.43±0.38a 6428.35±117.44c 5732.79±109.37c
T1 98.75±1.18a 246.57±3.77b 111.13±1.59b 91.95±1.77a 26.28±0.42a 6621.38±123.41c 5911.61±113.54c
T2 100.17±1.69a 258.18±2.96ab 120.57±2.01ab 92.13±1.39a 26.33±0.56a 7551.16±116.57b 6509.62±108.64b
T3 102.31±1.75a 273.47±2.95a 124.38±1.88a 91.17±1.51a 26.38±0.18a 8155.64±208.65ab 7299.85±184.26a
T4 100.68±1.59a 260.69±3.04ab 121.69±1.67ab 91.54±1.62a 26.35±0.24a 7651.93±132.17ab 6832.08±107.51ab

Table 7

Effects of different substrates on ability to tiller and earbearing tiller percentage"

处理
Treatment
落田苗
Basic seedling
number (×104/hm2)
最高苗数
The highest tillering
number (×104/hm2)
有效穗数
Effective panicle
number (×104/hm2)
茎蘖成穗率
Earbearing tiller
percentage (%)
CK1 101.72±1.86a 390.20±1.96a 276.80±2.67a 70.94±1.66a
CK2 105.05±1.44a 353.51±1.88b 240.12±3.36b 67.92±1.59a
T1 104.21±1.51a 357.81±2.05ab 246.57±3.77b 68.91±1.77a
T2 105.17±1.17a 366.52±1.59ab 258.18±2.96ab 70.44±1.13a
T3 106.72±1.35a 383.53±1.75ab 273.47±2.95a 71.30±1.08a
T4 103.58±1.23a 367.89±2.13ab 260.69±3.04ab 70.86±1.24a

Table 8

The correlation coefficient between rice yield and seedling quality index"

指标
Index
实际产量
Actual
yield
出苗率
Germination
rate
叶龄
Leaf
age
SPAD 株高
Plant
height
整齐度
Evenness
degree
茎基宽
Stem
base
width
根长
Root
length
单株
白根数
White root
number
per plant
单株地上
部干重
The shoot
dry weight
per plant
单株地下
部干重
The root
dry weight
per plant
全株
干重
Dry
weight
per plant
根冠比
Root-
shoot
ratio
壮苗
指数
Robust
seedling
index
实际产量Actual yield 1.00
出苗率
Germination rate
0.93** 1.00
叶龄Leaf age 0.91* 0.91* 1.00
SPAD 0.95** 0.86* 0.84* 1.00
株高Plant height 0.71 0.60 0.77 0.51 1.00
整齐度
Evenness degree
0.51 0.57 0.52 0.20 0.76 1.00
茎基宽
Stem base width
0.95** 0.88* 0.95** 0.88* 0.84* 0.55 1.00
根长Root length 0.95** 0.88* 0.76 0.93** 0.52 0.39 0.81 1.00
单株白根数
White root number
per plant
0.95** 0.97** 0.83* 0.91* 0.50 0.47 0.83* 0.96** 1.00
单株地上部干重
The shoot dry
weight per plant
0.97** 0.97** 0.96** 0.88* 0.76 0.62 0.96** 0.87* 0.93** 1.00
单株地下部干重
The root dry weight
per plant
0.99** 0.93** 0.87* 0.95** 0.61 0.45 0.89* 0.98** 0.97** 0.94** 1.00
全株干重
Dry weight of plant
0.99** 0.97** 0.94** 0.91* 0.72 0.57 0.95** 0.92** 0.96** 0.99** 0.97** 1.00
根冠比
Root-shoot ratio
0.70 0.56 0.44 0.78 0.21 0.03 0.50 0.87* 0.73 0.53 0.79 0.63 1.00
壮苗指数
Robust seedling index
0.97** 0.91* 0.84* 0.96** 0.57 0.39 0.87* 0.99** 0.97** 0.91* 1.00** 0.95** 0.83* 1.00
[1] 李永平, 沈立, 何道根. 浙江西兰花产业现状及国产品种在推广过程中存在的问题和对策. 浙江农业科学, 2017, 58(7):1175-1177.
[2] 米敏, 钱仲仓, 杨子峰. 临海市西兰花产业现状、存在问题和发展对策. 农村经济与科技, 2016, 27(19):79-81.
[3] 郭琪, 王翠红, 宋楠, 等. 叶菜类蔬菜废弃物简易沤制效果研究. 湖南农业科学, 2013(5):57-59.
[4] 李吉进, 邹国元, 刘安辉, 等. 蔬菜废弃物沤制液体有机肥的理化性状和腐熟特性研究. 中国农学通报, 2012, 28(13):264- 270.
[5] 刘安辉, 李吉进, 孙钦平, 等. 蔬菜废弃物沤肥在油菜上应用的产量、品质及氮素效应. 中国农学通报, 2011, 27(10):224- 229.
[6] 朱德峰, 张玉屏, 陈惠哲, 等. 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015, 48(17):3404-3414.
doi: 10.3864/j.issn.0578-1752.2015.17.008
[7] 范龙, 吴啸鹏, 黄敏, 等. 生物炭施用对水稻育秧土理化特性和秧苗素质的影响. 华南农业大学学报, 2018, 39(1):40-44.
[8] 王亚梁, 朱德峰, 张玉屏, 等. 水稻智能化育秧与杂交稻精准播种机插技术进展. 中国稻米, 2020, 26(5):30-33.
doi: 10.3969/j.issn.1006-8082.2020.05.007
[9] 付为国, 汤涓涓, 尹淇淋, 等. 不同基质育秧对机插秧秧苗素质的影响. 江苏农业科学, 2014, 42(5):83-85.
[10] 张恒栋, 敖正友, 何志旺, 等. 不同菌渣施用比例对水稻秧苗素质的影响. 中国稻米, 2021, 27(5):111-114.
doi: 10.3969/j.issn.1006-8082.2021.05.024
[11] 张林利, 吴大霞, 刘晔, 等. 酒糟等农业废弃物的堆肥化及水稻育秧基质研发. 土壤, 2019, 51(4):682-689.
[12] 鲁耀雄, 崔新卫, 罗赫荣, 等. 有机废弃物作育秧基质对水稻秧苗素质的影响. 南方农业学报, 2012, 43(11):1703-1707.
[13] 隋常玲, 左祥文, 喻本雨, 等. 有机育秧基质对水稻机插秧苗素质的影响. 贵州农业科学, 2014, 42(8):76-78.
[14] 邓亮. 育秧基质对水稻工厂化盘育秧秧苗素质的影响. 荆州:长江大学, 2016.
[15] 刘超杰, 郭世荣, 束胜, 等. 醋糟基质粉碎程度对辣椒幼苗生长和光合能力的影响. 农业工程学报, 2010, 26(1):330-334.
[16] 郭世荣. 固体栽培基质研究、开发现状及发展趋势. 农业工程学报, 2005, 21(14):1-4.
[17] 林阿典, 徐强辉, 杨锦标, 等. 泥炭、蛭石与稻田土混配基质对机插秧苗素质及栽插质量的影响. 中国稻米, 2022, 28(4):90-94.
doi: 10.3969/j.issn.1006-8082.2022.04.018
[18] 赵立军, 陈海涛, 蔡晓华, 等. 密闭式立体育秧系统水稻育苗基质配方研究. 农业工程学报, 2017, 33(9):204-210.
[19] 文中华, 刘喜雨, 孟军, 等. 生物炭和腐熟秸秆组配基质对水稻幼苗生长的影响. 沈阳农业大学学报, 2020, 51(1):10-17.
[20] 刘斌, 韩亚男, 袁旭峰, 等. 木耳菌糠的5种前处理对水稻育苗基质性质及稻苗生长的影响. 中国农业科学, 2016, 49(16):3098-3107.
doi: 10.3864/j.issn.0578-1752.2016.16.004
[21] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44(1):36-46.
[22] 唐志强, 董立强, 李睿, 等. 氮素与土壤类型对水稻秧苗素质及养分吸收的影响. 作物杂志, 2018(3):141-147.
[23] 罗翔, 曹晓林, 药林桃, 等. 不同育秧基质与营养土配比对大钵体毯状苗秧苗素质及产量的影响. 江西农业学报, 2022, 34(1):9-14.
[24] 李睿, 董立强, 商文奇, 等. 育秧基质和喷水间隔处理对机插秧苗素质及产量的影响. 中国水稻科学, 2021, 35(1):59-68.
doi: 10.16819/j.1001-7216.2021.0714
[25] 孙海天, 汪春, 李海亮, 等. 利用农业废弃物制备水稻育秧基质工艺的优化. 农机化研究, 2018(5):230-235.
[26] 谭雪明, 朱宁, 李木英, 等. 中药渣基质培育机插稻秧苗的效果研究. 江西农业大学学报, 2019, 41(6):1041-1047.
[27] 李玉祥, 何知舟, 丁艳锋, 等. 播种量对机插水卷苗秧苗素质及产量形成的影响. 中国水稻科学, 2018, 32(3):247-256.
doi: 10.16819/j.1001-7216.2018.7103
[28] 安之冬, 管浩, 朱远芃, 等. 育秧基质配施腐植酸对水稻秧苗素质及产量的影响. 中国土壤与肥料, 2022(6):173-181.
[29] 蒋明金, 李敏, 罗德强, 等. 播种量对不同粒型机插优质杂交籼稻秧苗素质、机插质量及产量的影响. 四川农业大学学报, 2020, 38(4):399-408,422.
[30] 成臣, 雷凯, 吕伟生, 等. 不同育秧方式和秧龄对南方晚粳稻秧苗素质及产量的影响. 杂交水稻, 2019, 34(6):46-51.
[31] 姚雄, 杨文钰, 任万军, 等. 育秧方式与播种量对水稻机插长龄秧苗的影响. 农业工程学报, 2009, 25(6):152-157.
[1] Zheng Fei, Chen Jing, Cui Yakun, Kong Lingjie, Meng Qingchang, Li Jie, Liu Ruixiang, Zhang Meijing, Zhao Wenming, Chen Yanping. Screening of High and Stable Yield Maize Varieties Suitable for Grain Mechanical Harvesting in Different Ecological Areas of the Huaibei Region [J]. Crops, 2023, 39(4): 110-117.
[2] Zhang Mingwei, Ding Jinfeng, Zhu Xinkai, Guo Wenshan. Analysis of High-Yielding Planting Density and Nitrogen Application in Super-Late Sowing Wheat Following Rice [J]. Crops, 2023, 39(4): 126-135.
[3] Ding Kaixin, Wang Lichun, Tian Guokui, Wang Haiyan, Li Fengyun, Pan Yang, Pang Ze, Shan Ying. Review on the Response Reasearch of Potato Growth and PhysiologicalCharacteristics to Water Stress [J]. Crops, 2023, 39(4): 16-21.
[4] Wang Liping, Bai Lanfang, Wang Tianhao, Wang Xiaoxuan, Bai Yunhe, Wang Yufen. Effects of Different Nitrogen Levels on Nitrogen Accumulation and Transport in Silage Maize [J]. Crops, 2023, 39(4): 165-173.
[5] Li Yuxin, Lu Min, Zhao Jiuran, Wang Ronghuan, Xu Tianjun, Lü Tianfang, Cai Wantao, Zhang Yong, Xue Honghe, Liu Yueʼe. The Production Status Investigation and Analysis of Summer Maize in Beijing-Tianjin-Tangshan Region [J]. Crops, 2023, 39(4): 174-181.
[6] Le Lihong, Liu Kaili, Chen Zhongping, Wang Binqiang, Tang Zhou, Cheng Feihu, Zhang Kun. Effects of Application Time of N Fertilizer at Panicle Differentiation Stage on the Nitrogen Use Efficiencies, Yield and Quality of One-Season Indica-Japonica Hybrid Rice [J]. Crops, 2023, 39(4): 195-201.
[7] Liu Hongjie, Ren Dechao, Ni Yongjing, Ge Jun, Zhang Suyu, Lü Guohua, Hu Xin. Effects of Straw Returning and Reducing Nitrogen Application on Soil Nutrients, Enzyme Activities and Wheat Yield [J]. Crops, 2023, 39(4): 210-214.
[8] Liu Ying, Gu Yunyi, Zhang Weiyang, Yang Jianchang. Research Advances in the Effects of Water and Nitrogen and Their Interaction on the Grain Yield, Water and Nitrogen Use Efficiencies of Wheat [J]. Crops, 2023, 39(4): 7-15.
[9] Yuan Shuai, Chen Jiwang, Chen Pingping, Yi Zhenxie. Response of Yield and Cd Accumulation and Distribution in Main Crop and Ratooning Rice of Xiangzaoxian 45 to Irrigation Methods [J]. Crops, 2023, 39(3): 101-108.
[10] Zhang Guozhong, Li Juan, Li Yucai, Jin Shoulin, Hong Ruke, Huang Dajun, Pu Shihuang, Shi Congbo, Duan Zilin, Ma Di, Chen Lijuan. The Effects of Nitrogen Fertilizer Reduction and Transplanting Density on Yield and Eating Quality of Japonica Hybrid Rice Dianheyou 615 [J]. Crops, 2023, 39(3): 109-115.
[11] Ma Yihu, He Xianbiao, Chen Jian, Tang Xuejun, Wang Xuhui, He Haohao, Jin Yuqing, Qi Wen, Jiang Hailing, Zhou Cui. Effects of Seedling Ages on Grain Yield and Quality of High Quality Rice in Southeastern Zhejiang Province [J]. Crops, 2023, 39(3): 116-125.
[12] Zhao Yun, Feng Guojun, Hu Xiangwei, Wumaierjiang·Kuerban , Li Pengbing, Li Cuimei, Akebota·Muheyati . Preliminary Report on Selection of Herbicide-Resistant Foxtail Millet Varieties Suitable for Planting in Kashgar, Xinjiang [J]. Crops, 2023, 39(3): 126-133.
[13] Xing Pipeng, Huang Yanfeng, Yi Siyuan, Lan Rujian, Pan Shenggang, Mo Zhaowen, Tian Hua, Duan Meiyang, Tang Xiangru. Effects of Foliar Ornithine Spraying at Heading Stage on Yield, Quality and 2-Acetyl-1-Pyrroline Biosynthesis of Fragrant Rice [J]. Crops, 2023, 39(3): 134-138.
[14] Li Junzhi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effects of Nitrogen Application Levels on Yield and Quality of Different Strong Gluten Wheat Varieties [J]. Crops, 2023, 39(3): 148-153.
[15] Song Chunyan, Wan Yunfan, Li Yu’e, Cai Andong, Hu Yanyan, Zhou Hui, Zhu Bo, Wang Bin. Relationships between Tiller Dynamic, Earbearing Tiller Rate and Yield of Double Cropping Rice under Elevated Temperature and CO2 Concentration [J]. Crops, 2023, 39(3): 159-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!